Beauties

It’s tough being good-looking and liked by so many.  You’ve got to watch out, because popularity makes you a target.  Others get jealous and begin a crusade to have you neutralized and removed from the spotlight.  They’ll start digging to find your little weaknesses and flaws, then they’ll exploit them to destroy your reputation.  Next thing you know, people look at you as some kind of hideous scoundrel.

Today, bright afternoon sunshine and a profusion of blooming wildflowers coaxed butterflies into action.  It was one of those days when you don’t know where to look first.

A Pearl Crescent (Phyciodes tharos) sipping nectar from Rough Boneset (Eupatorium pilosum) flowers.  Asters (Aster) are the host plants for the larvae of this butterfly.
A Common Buckeye (Junonia coenia) on Rough Boneset.  Its caterpillars are known to feed on members of the Acanthus family, possibly including the Water Willow (Justicia americana) which is so abundant in Conewago Falls.
Visitors from south of the Mason-Dixon Line arrived on the recent warm winds.  Two Cloudless Sulphurs (Phoebis sennae) patrolled the Riverine Grasslands, especially near the stands of Partridge Pea, a possible host plant.  One is seen here visiting a Halbred-leaved Rose Mallow blossom.  These large yellow butterflies are always a standout.

Purple Loosestrife (Lythrum salicaria) has a bad reputation.  Not native to the Americas, this prolific seed producer began spreading aggressively into many wetlands following its introduction.  It crowds out native plant species and can have a detrimental impact on other aquatic life.  Stands of loosestrife in slow-moving waters can alter flows, trap sediment, and adversely modify the morphology of waterways.  Expensive removal and biological control are often needed to protect critical habitat.

The dastardly Purple Loosestrife may have only two positive attributes.  First, it’s a beautiful plant.  And second, it’s popular; butterflies and other pollinators find it to be irresistible and go wild over the nectar.

A Silver-spotted Skipper (Epargyreus clarus) feeding on Purple Loosestrife nectar.  The host plants for this common butterfly’s caterpillars are a wide variety of Legumes.
A Cabbage White (Pieris rapae), a butterfly introduced from Europe in the 1800s, feeds on introduced Purple Loosestrife.
A Wild Indigo Duskywing (Erynnis baptisiae) feeding on Purple Loosestrife. This butterfly has expanded its population and range by using the introduced Crown Vetch as a host plant.

Don’t you just adore the wonderful butterflies.  Everybody does.  Just don’t tell anyone that they’re pollinating those dirty filthy no-good Purple Loosestrife plants.

SOURCES

Brock, Jim P., and Kenn Kaufman.  2003.  Butterflies of North America.  Houghton Mifflin Company.  New York.

Newcomb, Lawrence.  1977.  Newcomb’s Wildflower Guide.  Little, Brown and Company.  Boston, Massachusetts.

The Dungeon

There’s something frightening going on down there.  In the sand, beneath the plants on the shoreline, there’s a pile of soil next to a hole it’s been digging.  Now, it’s dragging something toward the tunnel it made.  What does it have?  Is that alive?

We know how the system works, the food chain that is.  The small stuff is eaten by the progressively bigger things, and there are fewer of the latter than there are of the former, thus the whole network keeps operating long-term.  Some things chew plants, others devour animals whole or in part, and then there are those, like us, that do both.  In the natural ecosystem, predators keep the numerous little critters from getting out of control and decimating certain other plant or animal populations and wrecking the whole business.  When man brings an invasive and potentially destructive species to a new area, occasionally we’re fortunate enough to have a native species adapt and begin to keep the invader under control by eating it.  It maintains the balance.  It’s easy enough to understand.

Japanese Beetles (Popillia japonica) seen here on Halberd-leaved Rose Mallow.  Without predation, exploding numbers of this invasive non-indigenous insect can defoliate and kill numerous species of plants in a given area.
The Song Sparrow (Melospiza melodia) is a generalist feeder, eating seeds and invertebrates including Japanese Beetles.  This species is the omnipresent year-round occupant of shoreline vegetation along the lower Susquehanna River.

Late summer days are marked by a change in the sounds coming from the forests surrounding the falls.  For birds, breeding season is ending, so the males cease their chorus of songs and insects take over the musical duties.  The buzzing calls of male “Annual Cicadas” (Neotibicen species) are the most familiar.  The female “Annual Cicada” lays her eggs in the twigs of trees.  After hatching, the nymphs drop to the ground and burrow into the soil to live and feed along tree roots for the next two to five years.  A dry exoskeleton clinging to a tree trunk is evidence that a nymph has emerged from its subterranean haunts and flown away as an adult to breed and soon thereafter die.  Flights of adult “Annual Cicadas” occur every year, but never come anywhere close to reaching the enormous numbers of “Periodical Cicadas” (Magicicada species).  The three species of “Periodical Cicadas” synchronize their life cycles throughout their combined regional populations to create broods that emerge as spectacular flights once every 13 or 17 years.

An “Annual Cicada” also known as a “Dog-day Cicada”, clings to the stem of a Halberd-leaved Rose Mallow at Conewago Falls.

For the adult cicada, there is danger, and that danger resembles an enormous bee.  It’s an Eastern Cicada Killer (Specius speciosus) wasp, and it will latch onto a cicada and begin stinging while both are in flight.  The stings soon paralyze the screeching, panicked cicada.  The Cicada Killer then begins the task of airlifting and/or dragging its victim to the lair it has prepared.  The cicada is placed in one of more than a dozen cells in the tunnel complex where it will serve as food for the wasp’s larvae.  The wasp lays an egg on the cicada, then leaves and pushes the hole closed.  The egg hatches in a several days and the larval grub is on its own to feast upon the hapless cicada.

An Eastern Cicada Killer (Sphecius speciosus) along the river shoreline. Despite their intimidating appearance, they do not sting humans and can be quite docile when approached.

Other species in the Solitary Wasp family (Sphecidae) have similar life cycles using specific prey which they incapacitate to serve as sustenance for their larvae.

A Solitary Wasp, one of the Thread-waisted Wasps (Ammophila species), drags a paralyzed moth caterpillar to its breeding dungeon in the sandy soil at Conewago Falls.  For the victim, there is no escape from the crypt.

The Solitary Wasps are an important control on the populations of their respective prey.  Additionally, the wasp’s bizarre life cycle ensures a greater survival rate for its own offspring by providing sufficient food for each of its progeny before the egg beginning its life is ever put in place.  It’s complete family planning.

The cicadas reproduce quickly and, as a species, seem to endure the assault by Cicada Killers, birds, and other predators.  The Periodical Cicadas (Magicicada), with adult flights occurring as a massive swarm of an entire population every thirteen or seventeen years, survive as species by providing predators with so ample a supply of food that most of the adults go unmolested to complete reproduction.  Stay tuned, 2021 is due to be the next Periodical Cicada year in the vicinity of Conewago Falls.

SOURCES

Eaton, Eric R., and Kenn Kaufman.  2007.  Kaufman Field Guide to Insects of North America.  Houghton Mifflin Company.  New York.

S’more

The tall seed-topped stems swaying in a summer breeze are a pleasant scene.  And the colorful autumn shades of blue, orange, purple, red, and, of course, green leaves on these clumping plants are nice.  But of the multitude of flowering plants, Big Bluestem, Freshwater Cordgrass, and Switchgrass aren’t much of a draw.  No self-respecting bloom addict is going out of their way to have a gander at any grass that hasn’t been subjugated and tamed by a hideous set of spinning steel blades.  Grass flowers…are you kidding?

Big Bluestem in flower in the Riverine Grasslands at Conewago Falls.

O.K., so you need something more.  Here’s more.

Meet the Partridge Pea (Chamaecrista fasciculata).  It’s an annual plant growing in the Riverine Grasslands at Conewago Falls as a companion to Big Bluestem.  It has a special niche growing in the sandy and, in summertime, dry soils left behind by earlier flooding and ice scour.  The divided leaves close upon contact and also at nightfall.  Bees and other pollinators are drawn to the abundance of butter-yellow blossoms.  Like the familiar pea of the vegetable garden, the flowers are followed by flat seed pods.

The Partridge Pea can tolerate dry sandy soils.

But wait, here’s more.

In addition to its abundance in Conewago Falls, the Halberd-leaved Rose Mallow (Hibiscus laevis) is the ubiquitous water’s edge plant along the free-flowing Susquehanna River for miles downstream.  It grows in large clumps, often defining the border between the emergent zone and shore-rooted plants.  It is particularly successful in accumulations of alluvium interspersed with heavier pebbles and stone into which the roots will anchor to endure flooding and scour.  Such substrate buildup around the falls, along mid-river islands, and along the shores of the low-lying Riparian Woodlands immediately below the falls are often quite hospitable to the species.

Halberd-leaved Rose Mallow is a durable inhabitant of the falls.  Regular flooding keeps competing species at bay.  A taproot helps to safeguard against dislocation, allowing plants to grow in places subjected to turbulent currents.
Halberd-leaved Rose Mallow in bloom.  The similarity to cultivated members of the Hibiscus genus can readily be seen.  It is one of the showiest of perennial wildflowers in the floodplain.  Note the lobed, halberd-shaped leaves, source of its former species name militaris.
The seeds of Halberd-leaved Rose Mallow are contained in bladders which can float to assist in their distribution.  Some of these bladders cling to the dead leafless stems in winter, making it an easy plant to identify in nearly any season.

A second native wildflower species in the genus Hibiscus is found in the Conewago Falls floodplain, this one in wetlands.  The Swamp Rose Mallow (H. moscheutos) is similar to Halberd-leaved Rose Mallow, but sports more variable and colorful blooms.  The leaves are toothed without the deep halberd-style lobes and, like the stems, are downy.  As the common name implies, it requires swampy habitat with ample water and sunlight.

Swamp Rose Mallow in a sunny wetland.  This variety with solid-colored flowers (without dark centers) and pale green leaves and stems was formerly known as a separate species of  Swamp Rose Mallow, H. palustris.  Note that the flowers are terminal on the stems.
A few scattered specimens of a more typical variety of Swamp Rose Mallow are found on the shoreline and in the Riverine Grasslands of Conewago Falls.  The blooms are bright pink with darker centers and the leaf stems are robust and reddish.  This one is seen growing among Halberd-leaved Rose Mallow, with which it shares the characteristic of having flower stems growing from some of the upper leaf axils.  A variety with red-centered white flowers is often found throughout the plant’s range.

In summary, we find Partridge Pea in the Riverine Grasslands growing in sandy deposits left by flood and ice scour.  We find Halberd-leaved Rose Mallow rooted at the border between shore and the emergent zone.  We find Swamp Rose Mallow as an emergent in the wetlands of the floodplain.  And finally, we find marshmallows in only one location in the area of Conewago Falls.  Bon ap’.

Here’s S’more

SOURCES

Newcomb, Lawrence.  1977.  Newcomb’s Wildflower Guide.  Little, Brown and Company.  Boston, Massachusetts.

Summer Grasses

It has not been a good summer if you happen to be a submerged plant species in the lower Susquehanna River.  Regularly occurring showers and thunderstorms have produced torrents of rain and higher than usual river stages.  The high water alone wouldn’t prevent you from growing, colonizing a wider area, and floating several small flowers on the surface, however, the turbidity, the suspended sediment, would.  The muddy current casts a dirty shadow on the benthic zone preventing bottom-rooted plants from getting much headway.  There will be smaller floating mats of the uppermost leaves of these species.  Fish and invertebrates which rely upon this habitat for food and shelter will find sparse accommodation…better luck next year.

Due to the dirty water, fish-eating birds are having a challenging season as they try to catch sufficient quantities of prey to feed themselves and their offspring.  A family of Ospreys (Pandion haliaetus) at Conewago Falls, including recently fledged young, were observed throughout this morning and had no successful catches.  Of the hundred or more individual piscivores of various species present, none were seen retrieving fish from the river.  The visibility in the water column needs to improve before fishing is a viable enterprise again.

Ospreys competing for a suitable fishing perch.  Improving water conditions in the coming week should increase their success as predators.
Versatile at finding food, adult Bald Eagles are experienced and know to be on the lookout for Ospreys with fish, a meal they can steal through intimidation.

While the submerged plant communities may be stunted by 2017’s extraordinary water levels, there is a very unique habitat in Conewago Falls which endures summer flooding and, in addition, requires the scouring effects of river ice to maintain its mosaic of unique plants.  It is known as a Riverine Grassland or scour grassland.

The predominant plants of the Riverine Grasslands are perennial warm-season grasses.  The deep root systems of these hardy species have evolved to survive events which prevent the grassland from reverting to woodland through succession.  Fire, intense grazing by wild herd animals, poor soils, drought, and other hardships, including flooding and ice scour, will eliminate intolerant plant species and prevent an area from reforesting.  In winter and early spring, scraping and grinding by flood-driven chunk ice mechanically removes large woody and poorly rooted herbaceous growth from susceptible portions of the falls.  These adverse conditions clear the way for populations of species more often associated with North America’s tall grass prairies to take root.  Let’s have a look at some of the common species found in the “Conewago Falls Pothole Rocks Prairie”.

Big Bluestem (Andropogon gerardi), seen here growing in the cracks of a pothole rock. High water nourishes the plant by filling the crevices with nutrient-loaded sediment. This species evolved with roots over three feet deep to survive fires, trampling by bison, and drought.
Freshwater Cordgrass (Spartina pectinata) does well with its roots in water.  It creates exceptional bird habitat and grows in the falls and on ice-scoured small islands in free-flowing segments of the Susquehanna River downstream.
Switchgrass (Panicum virgatum), like Big Bluestem, is one of the tall grass prairie species and, like Freshwater Cordgrass, grows in near pure stands on ice-scoured islands.  It takes flooding well and its extensive root system prevents erosion.
Though not a grass, Water Willow (Justicia americana) is familiar as a flood-enduring emergent plant of river islands, gravel bars, and shorelines where its creeping rhizome root system spreads the plant into large masses.  These stands are often known locally as “grass beds”.  This member of the acanthus family provides habitat for fish and invertebrates among its flooded leaves and stems.  Its presence is critical to aquatic life in a year such as this.

The Conewago Falls Riverine Grassland is home to numerous other very interesting plants.  We’ll look at more of them next time.

SOURCES

Brown, Lauren.  1979.  Grasses, An Identification Guide.  Houghton Mifflin Company.  New York, NY.

Fussy Eaters

She ate only toaster pastries…that’s it…nothing else.  Every now and then, on special occasions, when a big dinner was served, she’d have a small helping of mashed potatoes, no gravy, just plain, thank you.  She received all her nutrition from several meals a week of macaroni and cheese assembled from processed ingredients found in a cardboard box.  It contains eight essential vitamins and minerals, don’t you know?  You remember her, don’t you?

Adult female butterflies must lay their eggs where the hatched larvae will promptly find the precise food needed to fuel their growth.  These caterpillars are fussy eaters, with some able to feed upon only one particular species or genus of plant to grow through the five stages, the instars, of larval life.  The energy for their fifth molt into a pupa, known as a chrysalis, and metamorphosis into an adult butterfly requires mass consumption of the required plant matter.  Their life cycle causes most butterflies to be very habitat specific.  These splendid insects may visit the urban or suburban garden as adults to feed on nectar plants, however, successful reproduction relies upon environs which include suitable, thriving, pesticide-free host plants for the caterpillars.  Their survival depends upon more than the vegetation surrounding the typical lawn will provide.

The Monarch (Danaus plexippus), a butterfly familiar in North America for its conspicuous autumn migrations to forests in Mexico, uses the milkweeds (Asclepias) almost exclusively as a host plant.  Here at  Conewago Falls, wetlands with Swamp Milkweed (Asclepias incarnata) and unsprayed clearings with Common Milkweed (A. syriaca) are essential to the successful reproduction of the species.  Human disturbance, including liberal use of herbicides, and invasive plant species can diminish the biomass of the Monarch’s favored nourishment, thus reducing significantly the abundance of the migratory late-season generation.

Monarch caterpillar after a fourth molt.  The fifth instar feeding on Swamp Milkweed.
A fifth molt begets the Monarch pupa, the chrysalis, from which the showy adult butterfly will emerge.
Adult Monarch feeding on Goldenrod (Solidago) nectar.

Butterflies are good indicators of the ecological health of a given environment.  A diversity of butterfly species in a given area requires a wide array of mostly indigenous plants to provide food for reproduction.  Let’s have a look at some of the species seen around Conewago Falls this week…

An adult Silvery Checkerspot (Chlosyne nycteis) visiting a nectar plant, Partridge Pea (Chamaecrista fasciculata).  Wingstem (Verbesina alternifolia), a plant of the Riparian Woodlands, is among the probable hosts for the caterpillars.
A Gray Hairstreak (Strymon melinus) visits Crown Vetch, a possible host plant.  Other potential larval food in the area includes Partridge Pea, Halberd-leaved Rose Mallow (Hibiscus laevis) of the river shoreline, and Swamp Rose Mallow (Hibiscus moscheutos), a plant of wetlands.
The Eastern Tailed Blue (Cupido comyntas) may use Partridge Pea , a native wildflower species, and the introduced Crown Vetch (Securigera/Coronilla varia) as host and nectar plants at Conewago Falls.
The Least Skipper (Ancyloxypha numitor) is at home among tall grasses in woodland openings, at riverside, and in the scoured grassland habitat of the Pothole Rocks in the falls.  Host plants available include Switchgrass (Panicum vigatum), Freshwater Cordgrass (Spartina pectinata), and Foxtails (Setaria).
The Zabulon Skipper (Poanes zabulon) is an inhabitant of moist clearings where the caterpillars may feed upon Lovegrasses (Eragrostis) and Purpletop (Tridens flavus).
The Eastern Tiger Swallowtail (Papilio glaucus), a female seen here gathering nectar from Joe-Pye Weed (Eutrochium), relies upon several forest trees as hosts. Black Cherry (Prunus serotina), Willow (Salix), Yellow Poplar (Liriodendron tulipifera), also known as Tuliptree, and Green Ash (Fraxinus pennsylvanica) are among the local species known to be used.  The future of the latter food species at Conewago Falls is doubtful.  Fortunately for the Eastern Tiger Swallowtail, the “generalist” feeding requirements of this butterfly’s larvae enable the species to survive the loss of a host plant.
A female Eastern Tiger Swallowtail, black morph, gathering nectar from Joe-Pye Weed.
The Zebra Swallowtail (Protographium marcellus), an adult seen here on Joe-Pye Weed, feeds exclusively upon Pawpaw (Asimina) trees as a caterpillar.  This butterfly species may wander, but its breeding range is limited to the moist Riparian Woodlands where colonial groves of Pawpaw may be found.  The Common Pawpaw (Asimina triloba), our native species in Pennsylvania, and the Zebra Swallowtail occur at the northern edge of their geographic ranges in the Lower Susquehanna River Watershed.  Planting Pawpaw trees as an element of streamside reforestation projects certainly benefits this marvelous butterfly.

The spectacularly colorful butterflies are a real treat on a hot summer day.  Their affinity for showy plants doubles the pleasure.

By the way, I’m certain by now you’ve recalled that fussy eater…and how beautiful she grew up to be.

SOURCES

Brock, Jim P., and Kaufman, Kenn.  2003.  Butterflies of North America.  Houghton Mifflin Company.  New York, NY.

Digging In

If you visit the shores of the Susquehanna River during the warmer months of the year, there’s a pretty good probability that you’ll be taking a visitor along home with you.  Not to worry, it won’t raid the icebox or change the television channels when you leave the room to get a snack.  It won’t put you in the doghouse with the landlord for having a forbidden pet.  As a matter of fact, you may not even notice your new companion.  Sure enough though, it’s there, crawling through the luxurious warm fabric of your clothing and seeking out a good place to dig in and chow down.  O.K., so now you’re worried.

Ticks, particularly the American Dog Tick (Dermacentor variabilis), are widespread in the Lower Susquehanna River Watershed.  Like spiders, they are arachnids.  They have a four-stage life cycle (egg-larva-nymph-adult) which, in the case of D. variabilis, requires a minimum of two months to complete.  Females lay up to 6,500 eggs on the ground.  Then the fun begins as the larvae with any hope of survival must attach to a small mammal to feed.  They can survive for almost a year before finding a host.  After a successful hookup and subsequent blood feast of up to two weeks duration, the larva drops to the ground, molts into a nymph, and finds another small mammal, usually a bit bigger this time, to feed upon.  A nymph can survive for up to six months before needing to feed.  Finding the second host, the nymph feeds for 3 to 10 days, then drops to the ground to molt into an adult.  Adult American Dog Ticks can endure up to two years without feeding on a host.  The adults mate and feed on larger mammals such as deer and domestic animals including, of course, dogs.  After a blood meal of five days to two weeks duration, the adult female tick drops to the ground to lay eggs and initiate a new generation.

The adult American Dog Tick attaches to a potential host by hanging from vegetation and grabbing the passing victim with its forward legs to hitch a ride.  If undetected, a female will find a nice warm spot and “dig in” to begin feeding.  This male is looking for love, and in all the wrong places.

The American Dog Tick is renowned as a carrier of the Rocky Mountain Spotted Fever bacteria (Rickettsia rickettsii).  The bacteria is vectored by the ticks from rodents to dogs and humans.  The adult tick must be attached to the victim for a minimum of six to eight hours to transmit the pathogen.  A rash spreading from the wrists and the ankles to other portions of the body begins two to fourteen days after infection.

Tularemia, caused by the bacteria Francisella tularensis, can be passed by the American Dog Tick.  Symptoms can appear in three to twenty-one days and include chills, fever, and inflammation of the lymph nodes.

American Dog Ticks which attach to dogs, particularly near the neck, and are left in place to feed and engorge themselves for longer than five days can cause Canine Tick Paralysis.  Symptoms usually begin to subside only after a recovery period following removal of the arachnid.

The American Dog Tick is exposed to Borrelia burgdorferi, the bacteria responsible for Lyme Disease, however, transmittal of this pathogen is by the smaller Deer Tick (Ixodes scapularis), also known as the Black-legged Tick.  The Deer Tick is not presently common at Conewago Falls.  In the adjacent uplands, it is widespread and is carrying Lyme Disease where the White-tailed Deity (Odocoileus virginianus), the preferred host for the ticks, is found along with mice and other small rodents, the source of B. burgdorferi bacteria.  The Deer Tick easily escapes notice and cases of Lyme Disease are frequent, so vigilance is necessary.

SOURCES

Chan, Wai-Han, and Kaufman, Phillip.  2008.  American Dog Tick.  University of Florida Featured Creatures website  entnemdept.ufl.edu/creatures/urban/medical/american_dog_tick.htm  as accessed July 30, 2017.

 

The Antagonist

They can be a pesky nuisance.  The annoying high-frequency buzzing is bad enough, but it’s the quiet ones that get you.  While you were swatting at the noisy one, the silent gender sticks you and begins to feed.  Maybe you know it, or maybe you don’t.   She could make you itch and scratch.  If she’s carrying a blood-borne pathogen, you could get sick and possibly die.

To humans, mosquitos are the most dangerous animal in the world (though not in the United States where man himself and the domestic dog are more of a threat).  Globally, the Anopheles mosquitos that spread Malaria have been responsible for millions and millions of human deaths.  Some areas of Africa are void of human habitation due to the prevalence of Malaria-spreading Anopheles mosquitos.  In the northeastern United States, the Northern House Mosquito (Culex pipiens), as the carrier of West Nile Virus, is the species of greatest concern.  Around human habitations, standing water in tires, gutters, and debris are favorite breeding areas.  Dumping stagnant water helps prevent the rapid reproduction of this mosquito.

In recent years, the global distribution of these mosquito-borne illnesses has been one of man’s inadvertent accomplishments.  An infected human is the source of pathogens which the feeding mosquito transmits to another unsuspecting victim.  Infectious humans, traveling the globe, have spread some of these diseases to new areas or reintroduced them to sectors of the world where they were thought to have been eliminated.  Additionally, where the specific mosquito carrier of a disease is absent, the mobility of man and his cargos has found a way to transport them there.  Aedes aegypti, the “Yellow Fever Mosquito”, carrier of its namesake and the Zeka Virus, has found passage to much of the world including the southern United States.  Unlike other species, Aedes aegypti dwells inside human habitationsthus transmitting disease rapidly from person to person.  Another non-native species, the Asian Tiger Mosquito (Aedes albopictus), vector of Dengue Fever in the tropics, arrived in Houston in 1985 in shipments of used tires from Japan and in Los Angeles in 2001 in wet containers of “lucky bamboo” from Taiwan…some luck.

Asian Tiger Mosquito in action during the daylight hours, typical behavior of the genus. This species has been found in the area of Conewago Falls since at least 2013.

Poor mosquito, despite the death, suffering, and misery it has brought to Homo sapiens and other species around the planet, it will never be the most destructive animal on earth.  You, my bloodthirsty friends, will place second at best.  You see, mosquitos get no respect, even if they do create great wildlife sanctuaries by scaring people away.

The winner knows how to wipe out other species and environs not only to ensure its own survival, but, in many of its populations, to provide leisure, luxury, gluttony, and amusement.  This species possesses the cognitive ability to think and reason.  It can contemplate its own existence and the concepts of time.  It is aware of its history, the present, and its future, though its optimism about the latter may be its greatest delusion.  Despite possessing intellect and a capacity to empathize, it is devious, sinister, and selfish in its treatment of nearly every other living thing around it.  Its numbers expand and its consumption increases.  It travels the world carrying pest and disease to all its corners.  It pollutes the water, land, and air.  It has developed language, culture, and social hierarchies which create myths and superstitions to subdue the free will of its masses.   Ignoring the gift of insight to evaluate the future, it continues to reproduce without regard for a means of sustenance.  It is the ultimate organism, however, its numbers will overwhelm its resources.  The crowning distinction will be the extinction.

Homo sapiens will be the first animal to cause a mass extinction of life on earth.  The forces of nature and the cosmos need to wait their turn; man will take care of the species annihilation this time around.  The plants, animals, and clean environment necessary for a prosperous healthy life will cease to exist.  In the end, humans will degenerate, live in anguish, and leave no progeny.  Fate will do to man what he has done to his co-inhabitants of the planet.

The Bald Eagle (Haliaeetus leucocephalus) is again a breeding species in the Susquehanna River watershed.  It is generally believed that during the mid-twentieth century, Dichlorodiphenyltrichloroethane (DDT) pesticide residues accumulated in female top-of-the-food-chain birds including Bald Eagles.  As a result, thinner egg shells were produced.  These shells usually cracked during incubation, leading to failed reproduction in entire populations of birds, particularly those that fed upon fish or waterfowl.  In much of the developed world, DDT was used liberally during the mid-twentieth century to combat Malaria by killing mosquitos.  It was widely used throughout the United States as a general insecticide until it was banned here in 1972.  (Editors Note:  There is the possibility that polychlorinated biphenyls [P.C.B.s] and other industrial pollutants contributed to the reproductive failure of birds at the apex of aquatic food chains.  Just prior to the recovery of these troubled species, passage of the Clean Water Act in 1972 initiated reductions in toxic discharges from point sources into streams, rivers, lakes, bays, and oceans.  Production of P.C.B.s was banned in the United States in 1978.  Today, P.C.B.s from former discharge and dumping sites continue to be found in water.  Spills can still occur from sources including old electric transformers.)
To substitute any other beast would be folly.  Man, the human, Homo sapiens, the winner and champion, will repeatedly avail himself as the antagonist during our examination of the wonders of wildlife.  He is the villain.  The tragedy of his self-proclaimed dominion over the living things of the world will wash across these pages like muddy water topping a dam.  There’s nothing I can do about it, aside from fabricating a bad novel with a fictional characterization of man.  So let’s get on with it and take a look at “A Natural History of Conewago Falls”.  Let’s discover the protagonist, the heroic underdog of our story, “Life in the Lower Susquehanna River Watershed.”

Over the top today.
SOURCES

Avery, Dennis T.  1995.  Saving the Planet with Pesticides and Plastic: The Environmental Triumph of High-Yield Farming.  Hudson Institute.  Indianapolis, Indiana.

Eaton, Eric R., and Kenn Kaufman.  2007.  Kaufman Field Guide to Insects of North America.  Houghton Mifflin Co.  New York.

Newman, L.H.  1965.  Man and Insects.  The Natural History Press.  Garden City, New York.

 

 

The Wall

It was one of the very first of my memories.  From the lawn of our home I could look across the road and down the hill through a gap in the woodlands.  There I could see water, sometimes still with numerous boulders exposed, other times rushing, muddy, and roaring.  Behind these waters was a great stone wall and beyond that a wooded hillside.  I recall my dad asking me if I could see the dam down there.  I couldn’t see a dam, just fascinating water and the gray wall behind it.  I looked and searched but not a trace of a structure spanning the near to far shore was to be seen.  Finally, at some point, I answered in the affirmative to his query; I could see the dam…but I couldn’t.

We lived in a small house in the village of Falmouth along the Susquehanna River in the northwest corner of Lancaster County over fifty years ago.  A few years after we had left our riverside domicile and moved to a larger town, the little house was relocated to make way for an electric distribution sub-station and a second set of electric transmission wires in the gap in the woodlands.  The Brunner Island coal-fired electric generating station was being upgraded downstream and, just upstream, a new nuclear-powered generating station was being constructed on Three Mile Island.  To make way for the expanding energy grid, our former residence was trucked to a nearby boat landing where there were numerous other river shacks and cabins.  Because it was placed in the floodplain, the building was raised onto a set of wooden stilts to escape high water.  It didn’t help.  The record-breaking floods of Hurricane Agnes in June of 1972 swept the house away.

The view through the cut in the woodland, a little wider than in the early 1960s with the addition of the newer electric transmission wire towers. The “Wall” is the same.

During the time we lived along the Susquehanna, the river experienced record-low flow rates, particularly in the autumn of 1963 and again in 1964.  My dad was a dedicated 8mm home-movie photographer.  Among his reels was film of buses parked haphazardly along the road (PA Route 441 today) near our home.  Sightseers were coming to explore the widely publicized dry riverbed and a curious moon-like landscape of cratered rocks and boulders.  It’s hard to fathom, but people did things like that during their weekends before Sunday-afternoon football was invented.  Scores of visitors climbed through the rocks and truck-size boulders inspecting this peculiar scene.  My dad, his friends, and so many others with camera in hand were experiencing the amazing geological feature known as the Pothole Rocks of Conewago Falls.

Conewago Falls on the Susquehanna River and several exposed York Haven Diabase Pothole Rocks.  Lancaster (foreground) and Dauphin (center) Counties meet along a southwest to northeast borderline through the rapids.  Lands on the west shoreline in the background are in York County.  Three Mile Island is seen in the upper right.

The river here meets serious resistance as it pushes its way through the complex geology of south-central Pennsylvania.  These hard dark-gray rocks, York Haven Diabase, are igneous in origin.  Diabase sheets and sills intruded the Triassic sediments of the Gettysburg Formation here over 190 million years ago.  It may be difficult to visualize, but these sediments were eroded from surrounding mountains into the opening rift valley we call the Gettysburg Basin.  This rift and others in a line from Nova Scotia to Georgia formed as the supercontinent Pangaea began dividing into the continents we know today.  Eventually the Atlantic Ocean rift would dominate as the active dynamic force and open to separate Africa from North America.  The inactive Gettysburg Basin, filled with sediments and intruded by igneous diabase, would henceforth, like the mountainous highlands surrounding it, be subjected to millions of years of erosion.  Of the regional rocks, the formations of Triassic redbeds, sandstones, and particularly diabase in the Gettysburg Basin are among the more resistant to the forces of erosion.  Many less resistant older rocks, particularly those of surrounding mountains, are gone.  Today, the remains of the Gettysburg Basin’s rock formations stand as rolling highlands in the Piedmont Province.

Flooded from the heavy rains of Tropical Storm Lee, the sediment-laden Susquehanna River flows through the Gettysburg Basin just south of Harrisburg, PA, September 10, 2011.  The “Wall” as seen from space.  (NASA Earth Observatory Image)

The weekend visitors in 1963 and 1964 marveled at evidence of the river’s fight to break down the hard York Haven Diabase.   Scoured bedrock traced the water’s turbulent flow patterns through the topography of the falls.  Meltwater from the receding glaciers of the Pleistocene Ice Ages thousands to tens of thousands of years ago raged in high-volume, abrasive-loaded torrents to sculpt the Pothole Rocks into the forms we see today.  Our modern floodwaters with ice and fine suspended sediments continue to wear at the smooth rocks and boulders, yet few are broken or crumbled to be swept away.  It’s a very slow process.  The river elevation here drops approximately 19 feet in a quarter of a mile, a testament to the bedrock’s persisting resistance to erosion.  Conewago Falls stands as a natural anomaly on a predominantly uniform gradient along the lower Susquehanna’s downhill path from the Appalachian Mountains to the Chesapeake Bay.

Normally the scene of dangerous tumbling rapids, the drought and low water of 1963 and 1964 had left the falls to resemble a placid scene—a moonscape during a time when people were obsessed with mankind’s effort to visit earth’s satellite.  Visitors saw the falls as few others had during the twentieth century.  Dr. Herbert Beck of Franklin and Marshall College described an earlier period of exposure, “…pot holes…were uncovered during the third week in October, 1947, for the first time in the memory of man, when the drought parched Susquehanna River retreated far below its normal low stage”.  Then, as in 1963 and on occasions more recent, much of it was due to the presence of the wall.  I had to be a bit older than four years old to grasp it.  You see the wall and the dam are one and the same.  The wall is the York Haven Dam.  And it is responsible for channeling away the low flow of the Susquehanna during periods of drought so that we might have the opportunity to visit and explore the Pothole Rocks of Conewago Falls along the river’s east shore.

The initial segment of the dam, a crib structure built in 1885 by the York Haven Paper Company to supply water power to their mill, took advantage of the geomorphic features of the diabase bedrock of Conewago Falls to divert additional river flow into the abandoned Conewago Canal.  The former canal, opened in 1797 to allow passage around the rapids along the west shore, was being used as a headrace to channel water into the grinding mill’s turbines.  Strategic placement of this first wall directed as much water as possible toward the mill with the smallest dam practicable.  The York Haven Power Company incorporated the paper mill’s crib dam into the “run-of-the-river” dam built through the falls from the electric turbine powerhouse they constructed on the west shore to the southern portion of Three Mile Island more than a mile away.   The facility began electric generation in 1904.  The construction of the “Red Hill Dam” from the east shore of Three Mile Island to the river’s east shore made York Haven Dam a complete impoundment on the Susquehanna.  The pool, “Lake Frederic”, thus floods that portion of the Pothole Rocks of Conewago Falls located behind the dam.   On the downstream side, water spilling over or through the dam often inundates the rocks or renders them inaccessible.

During the droughts of the early 1960s, diversion of nearly all river flow to the York Haven Dam powerhouse cleared the way for weekend explorers to see the Pothole Rocks in detail.  Void of water, the intriguing bedrock of Conewago Falls below the dam greeted the curious with its ripples, cavities, and oddity.  It was an opportunity nature alone would not provide.  It was all because of the wall.

York Haven Dam and powerhouse. The “Wall” traverses Conewago Falls upstream to Three Mile Island to direct water to the powerhouse on the west shore of the Susquehanna River.

SOURCES

Beck, Herbert H.  1948.  “The Pot Holes of Conewago Falls”.  Proceedings of the Pennsylvania Academy of Science.  Penn State University Press.  22: pp. 127-130.

Smith, Stephen H.  2015.  #6 York Haven Paper Company; on the Site of One of the Earliest Canals in America.  York Past website www.yorkblog.com/yorkpast/2015/02/17/6-york-haven-paper-company-on-the-site-of-one-of-the-earliest-canals-in-america/  as accessed July 17, 2017.

Stranahan, Susan Q.  1993.  Susquehanna, River of Dreams.  The Johns Hopkins University Press.  Baltimore, Maryland.

Van Diver, Bradford B.  1990.  Roadside Geology of Pennsylvania.  Mountain Press Publishing Company.  Missoula, Montana.

Welcome

 Major funding for “Life in the Lower Susquehanna River Watershed: A Natural History of Conewago Falls—The Waters of Three Mile Island” is provided by…

denying an aging man the consumer comforts of adequate heat, modern appliances, reliable transportation, and a good haircut…

and by…

collecting loose change in a dangerous alley.