Schools of Juvenile Largemouth Bass Learning to Survive

Yesterday, while photographing damselflies on a rehabilitated segment of a warmwater lower Susquehanna valley stream, we noticed some oddly chunky small fish gathered on the surface of a pool along the shoreline.

Damselflies and Small Fish
Perched damselflies and some sort of robust little fish feeding nearby.

Upon further inspection, they appeared to be fingerlings of some type of sunfish or bass.  Time for a closer look.

Juvenile Largemouth Bass
At just one inch in length, these juvenile Largemouth Bass (Micropterus salmoides) are already showing signs of the dark lateral stripe that so easily identifies the adult fish.
Adult Largemouth Bass on Spawning Bed
Adult Largemouth Bass began spawning among nearby beds of Spatterdock and other emergent and submerged aquatic vegetation about one month ago, just as water temperatures stabilized to a minimum of the low sixties for several days and nights.  Each female can lay thousands of eggs.  Only those that are successfully fertilized by the attending male have a chance to hatch.
Juvenile Largemouth Bass
Largemouth Bass eggs can hatch as soon as ten days after being deposited in the nest by the female and fertilized by the male.  The fry linger in the nest for another week consuming the nutrition contained in their attached yolk sac.
Juvenile Largemouth Bass
The juvenile fish are then ready to leave the nest and begin feeding on zooplankton.
Juvenile Largemouth Bass
Young largemouths often gather in schools to feed in waters near their birthplace.  As they grow, they soon begin consuming small invertebrates and tiny fish.  But for young bass, the hazards are many.  These juveniles can become victims of a host of predatory insects, crayfish, piscivorous birds, and bigger fish.  Then too, Largemouth Bass, like most other species  of fishes, are cannibalistic and will consume others of their own kind.  Of the thousands of eggs produced by a mating pair, natural selection determines which, if any, of their progeny will survive to reproduce and sustain their genetic line.

In the Lower Susquehanna River Watershed, the Largemouth Bass is an introduced species.

Chesapeake Bay Maritime Accidents and Their Impact on Susquehanna Wildlife

Tuesday’s collision of the container ship Dali into Baltimore’s Francis Scott Key Bridge and the nearly immediate collapse of the span into the chilly waters below reminds us just how unforgiving and deadly maritime accidents can be.  Upon termination of rescue and recovery operations, salvage and cleanup will be prioritized as the next steps in the long-term process of reopening the navigable waters to ship traffic and construction of a new bridge.  Part of the effort will include monitoring for leaks of fuels and other hazardous materials from the ship, its damaged cargo containers, and vehicles and equipment that were on the bridge when it failed.

Damage to the hull of the Dali and to the cargo containers on her deck could lead to leaks of hazardous liquids or other materials into Chesapeake Bay.  (United States Army Corps of Engineers Baltimore image)

On the waters and shores of today’s Chesapeake, numerous county, state, and federal agencies, including the United States Coast Guard, monitor and inspect looking for conditions and situations that could lead to point-source or accidental discharges of petroleum products and other hazardous materials into the bay.  Many are trained, equipped, and organized for emergency response to contain and mitigate spills upon detection.  But this was not always the case.

Through much of the twentieth century, maritime spills of oil and other chemicals magnified the effects of routine discharges of hazardous materials and sanitary sewer effluent into the Chesapeake and its tributaries.  The cumulative effect of these pollutants progressively impaired fisheries and bay ecosystems leading to noticeable declines in numbers of many aquatic species.  Rather frequently, spills or discharges resulted in conspicuous fish and/or bird kills.

One of the worst spills occurred near the mouth of the Potomac River on February 2, 1976, when a barge carrying 250,000 gallons of number 6 oil sank in a storm and lost its cargo into the bay.  During a month-long cleanup, the United States Coast Guard recovered approximately 167,000 gallons of the spilled oil, the remainder dispersed into the environment.  A survey counted 8,469 “sea ducks” killed.  Of the total number, the great majority were Horned Grebes (4,347 or 51.3%) and Long-tailed Ducks (2,959 or 34.9%).  Other species included Surf Scoter (Melanitta perspicillata) (405 or 4.8%), Common Loon (195 or 2.3%), Bufflehead (166 or 2.0%), Ruddy Duck (107 or 1.3%), Common Goldeneye (78 or 0.9%), Tundra Swan (46 or 0.5%), Greater Scaup (19 or 0.2%), American Black Duck (12 or 0.2%), Common Merganser (11 or 0.1%), Canvasback (10 or 0.1%), Double-crested Cormorant (10 or 0.1%), Canada Goose (8 or 0.1%), White-winged Scoter (Melanitta deglandi) (7 or 0.1%), Redhead (5 or 0.1%), gull species (10 or 0.1%), miscellaneous ducks and herons (13 or 0.2%) and unidentified (61 or 0.7%).  During the spring migration, a majority of these birds would have made their way north and passed through the lower Susquehanna valley.  The accident certainly impacted the occurrence of the listed species during that spring in 1976, and possibly for a number of years after.

Horned Grebe during migration on the Susquehanna near Haldeman Riffles.
Of the 8,469 birds killed by the February 2, 1976, oil spill on the Chesapeake, 51.3% (4,347) were Horned Grebes.  Many of them would have migrated north through the Lower Susquehanna River Watershed during the coming spring.

The Federal Water Pollution Control Act Amendments of 1972, commonly known as the Clean Water Act, put teeth into the original FWCPCA of 1948 and began reversing the accumulation of pollutants in the bay and other bodies of water around the nation.  Additional amendments in 1977 and 1987 have strengthened protections and changed the culture of “dump-and-run” disposal and “dilution-is-the-solution” treatment of hazardous wastes.  During the late nineteen-seventies and early nineteen-eighties, emergency response teams and agencies began organizing to control and mitigate spill events.  The result has been a greater awareness and competency for handling accidental discharges of fuels and other chemicals into Chesapeake Bay and other waterways.  These improvements can help minimize the environmental impact of the Dali’s collision with the Francis Scott Key Bridge in Baltimore.

Hickory Shad
Oil spills and other pollution in the Chesapeake can impact populations of migratory fish including the anadromous Hickory Shad which are presently transiting the bay on their way to the waters of the Susquehanna below Conowingo Dam.

SOURCES

Roland, John V., Moore, Glenn E., and Bellanca, Michael A.  1977.  “The Chesapeake Bay Oil Spill—February 2, 1976: A Case History”.  International Oil Spill Conference Proceedings (1977).  1977 (1): 523-527.

Piscivorous Waterfowl Visiting Lakes and Ponds

Heavy rains and snow melt have turned the main stem of the Susquehanna and its larger tributaries into a muddy torrent.  For fish-eating (piscivorous) ducks, the poor visibility in fast-flowing turbid waters forces them to seek better places to dive for food.  With man-made lakes and ponds throughout most of the region still ice-free, waterfowl are taking to these sources of open water until the rivers and streams recede and clear.

Common Mergansers
The Common Merganser is a species of diving duck with a primary winter range that, along the Atlantic Coast, reaches its southern extreme in the lower Susquehanna and Potomac watersheds.  Recently, many have left the main stem of the muddy rivers to congregate on waters with better visibility at some of the area’s larger man-made lakes.
Common Mergansers Feeding
Common Mergansers dive to locate and capture prey, primarily small fish.  During this century, their numbers have declined along the southern edge of their winter range, possibly due to birds remaining to the north on open water, particularly on the Great Lakes.  In the lower Susquehanna valley, some of these cavity-nesting ducks can now be found year-round in areas where heavy timber again provides breeding sites in riparian forests.  After nesting, females lead their young to wander widely along our many miles of larger rivers and streams to feed.
Several Common Mergansers Intimidating a Male with a Freshly Caught Fish
The behavior of these mergansers demonstrates the stiff competition for food that can result when predators are forced away from ideal habitat and become compressed into less favorable space.  On the river, piscivores can feed on the widespread abundance of small fish including different species of minnows, shiners, darters, and more.  In man-made lakes stocked for recreational anglers with sunfish, bass, and other predators (many of them non-native), small forage species are usually nonexistent.  As a result, fish-eating birds can catch larger fish, but are successful far less often.  Seen here are several mergansers resorting to intimidation in an effort to steal a young bass away from the male bird that just surfaced with it.  While being charged by the aggressors, he must quickly swallow his oversize catch or risk losing it.

With a hard freeze on the way, the fight for life will get even more desperate in the coming weeks.  Lakes will ice over and the struggle for food will intensify.  Fortunately for mergansers and other piscivorous waterfowl, high water on the Susquehanna is expected to recede and clarify, allowing them to return to their traditional environs.  Those with the most suitable skills and adaptations to survive until spring will have a chance to breed and pass their vigor on to a new generation of these amazing birds.

Forty Years Ago in the Lower Rio Grande Valley: Day Eight


Back in late May of 1983, four members of the Lancaster County Bird Club—Russ Markert, Harold Morrrin, Steve Santner, and your editor—embarked on an energetic trip to find, observe, and photograph birds in the Lower Rio Grande Valley of Texas.  What follows is a daily account of that two-week-long expedition.  Notes logged by Markert some four decades ago are quoted in italics.  The images are scans of 35 mm color slide photographs taken along the way by your editor.


DAY EIGHT—May 28, 1983

“Bentsen State Park, Texas”

“Alarm at 6:00 A.M.  After breakfast we traveled to Falcon State Park and toured the whole camp area, stopping many places to observe birds.  We ran up a good list.”

And so we left what had been our home for the last several days and headed west.  In the forty years since our departure that morning, Bentsen-Rio Grande State Park has experienced a number of operational changes.  Today, it is a World Birding Center site.  For conducting the seasonal hawk census, a tower has been erected to provide counters and observes with an unrestricted view above the treetops.  If you wanted to camp in the park now, you would need reservations and would have to hike your gear in to one of only a few primitive campsites.  Trailer and motor home accommodations no longer exist.  A tram service is now available for touring the park by motor vehicle.

West of Rio Grande City, we exited the river’s outflow delta and entered the Texas scrubland, an area mostly devoid of large trees except in moist soils immediately adjacent to the Rio Grande where the lush vegetation creates a dense subtropical riparian forest in many places.  The reservoir itself is known to attract migrating and vagrant waterfowl, waders, shorebirds, gulls, terns, and seabirds.  (United States Fish and Wildlife Service base image)

Falcon State Park is located along the east shore of Falcon Reservoir.  There are no shade trees beneath which one can escape the scorching rays of the sun on a hot day.  This is the easternmost section of the scrubland’s Tamaulipan Saline Thornscrub, a xeric plant community of head-high brush found only on clay soils with a particularly high salinity.  Many of the plants look similar to other varieties of shrubs and small trees with which one may be familiar, except nearly all of them are covered with nasty thorns and prickles.  And yes, there are cactus.  You can’t make your way bushwhacking cross country without obtaining cuts, gashes, and scars to show for it.  The Falcon State Recreation Area bird checklist published in 1977 has a nice description of the plants found there—mesquite, ebano, guaycan, blackbrush and catclaw acacia, granjeno, coyotillo, huisache, tasajillo, prickly pear, allthorn, cenizo, colima, and yucca.  In the margins between the thornscrub growth, there is an abundance of grasses and wildflowers.  On nearby ridges, Tamaulipan Calcareous Thornscrub, a similar xeric plant community, occupies soils with a higher content of calcium carbonate.  Together, these communities comprise much of the Tamaulipan Mezquital ecoregion of scrublands in Starr County and western Hidalgo County in the Rio Grande valley of Texas.

After being greeted by a Greater Roadrunner at the campsite, we took a walk to the nearby shoreline of the reservoir.  We spotted Olivaceous Cormorants perched on some dead limbs in the water nearby.  Known today as Neotropic Cormorant (Phalacrocorax brasilianus), it is yet another specialty of the Rio Grande Valley.  Elsewhere on or near the water—Cattle Egret, Great Egret, Black-bellied Whistling Duck, Osprey, Common Gallinule, Killdeer, Laughing Gull, Forster’s Tern (Sterna forsteri), Least Tern, and Caspian Tern were seen.

Greater Roadrunner
The Greater Roadrunner is right at home in the Tamaulipan Saline Thornscrub habitat in and around Falcon State Park.  This one came to check us out soon after our arrival at our campsite.  Roadrunners prey on insects, rodents, and lizards including the Texas Spotted Whiptail (Aspidoscelis gularis), a species which we found nearby.

In the thornscrub around the campground, which, like Bentsen-Rio Grande State Park, we had pretty much to ourselves, we saw Scissor-tailed Flycatcher, Curve-billed Thrasher, White-winged Dove, Mourning Dove, Ground Dove, Inca Dove, and White-tipped Dove.  A single Chihuahuan Raven was a fly by.  We saw and smelled several road-killed Nine-banded Armadillos (Dasypus novemcinctus), but never found one alive.

Then, it started to rain.  Not just a shower, but a soaker that persisted through much of the day.  Rainy days can make for great birding, so we kept at it.  Unfortunately, such days aren’t too ideal for photography, so we did only what we could without ruining our equipment.

Cactus Wren
In the campground at Falcon State Park, a Cactus Wren (Campylorhynchus brunneicapillus) takes shelter from the rain beneath a canopy protecting a picnic table.
Cactus Wren
Looks like a good idea, others soon sought shelter there as well.

“Finally we drove to the spillway of the dam and parked.” 

Falcon Dam was another of the numerous flood-control projects built on the Rio Grande during the middle of the twentieth century.  Behind it, Falcon Reservoir stores water for irrigation and operation of a hydroelectric generating station located within the dam complex.  Construction of the dam and power plant was a joint venture shared by Mexico and the United States.  The project was dedicated by Presidents Adolfo Ruiz Cortines and Dwight D. Eisenhower in 1953.

Rainy days aside, the route precipitation takes to reach the Falcon Reservoir and the Lower Rio Grande Valley includes hundreds of miles through arid grasslands and scrublands.  Along the way, much of that water is lost to natural processes including evaporation and aquifer recharge, but an increasing percentage of the volume is being removed by man for civil, industrial, and agricultural uses.  Can the Rio Grande and its tributaries continue to meet demand?

The Rio Grande’s headwaters can be found in south-central Colorado where spring snow melt is vital to establishing adequate flow to allow the river to recharge aquifers in the hundreds of miles of arid lands through which it flows.  Presently, dams in the upper reaches of the river are operated to hold water during the spring thaw, then release it slowly to compensate for base flow lost to withdrawals for irrigation in extensive areas of the middle reaches of the watershed.  With everyone wanting their take, is there enough water to go around?  Diminishing ground water levels suggest the answer is no.  (National Oceanic and Atmospheric Administration base image)
Using the streamflow recharge process, the flowing Rio Grande provides water to the aquifers in the arid regions through which it passes.  Click the image for a slightly larger version.  (United States Geological Survey image)

“On the way in we saw and photographed an apparent sick or injured Swainson’s Hawk.  We approached it very close.” 

Swainson's Hawk
The Swainson’s Hawk (Buteo swainsoni), a bird of prairies and other grasslands, is an abundant migrant through the Lower Rio Grande Valley in both spring and fall.  This one was grounded, rain-soaked, and obviously running late.  Others of its kind were by now on their breeding grounds in the Great Plains and Rocky Mountains.
Swainson's Hawk
The bird allowed us to approach without attempting to flee, which isn’t a good sign.  We looked for any obvious physical injuries and found none.
Swainson's Hawk
The continuous rain had the hawk’s feathers matted down and soaked.
Swainson's Hawk
Was its water-logged plumage the problem, or was it the result of its inability to thrive due to an illness?  We had no way of telling, so we let it be and vowed to stop back later to check on it.
Swainson's Hawk
Steve the hawk whisperer?

“At the spillway we sat in the camper, except when the rain slackened, then we stood out and watched in vain for the Green or Ringed Kingfisher, which we never did see.”

At the spillway House Sparrows, Rough-winged Swallows, and Cliff Swallows were nesting on the dam, the latter two species grabbing flying insects above the waters of the Rio Grande.

Longnose Gar
Despite the rain, anglers were fishing along the spillway walls where this young man caught a Longnose Gar (Lepisosteus osseus).  The reservoir has been stocked with Alligator Gar (Atractosteus spatula), Spotted Gar (Lepisosteus oculatus), and a variety of bass, catfish, and other species to establish a trophy sport fishery.  Many specimens grow to become trophy-size there due to the warm water temperatures.  These guys though were fishing for food, not trophies.

“I made dinner here at this spillway and we continued to watch.  The rain almost stopped, so we walked down the road about 1 1/2 miles, during which time we saw a lifer for Harold — Hook-billed Kite.  We followed Father Tom’s directions to a spot for the Ferruginous Owl — no luck.”

Red-billed Pigeon
A Red-billed Pigeon in a willow tree in the subtropical riparian forest along the banks of the Rio Grande below Falcon Dam.  Prior to this trip, neither Steve nor I had ever seen this tropical species before.

“Back at the spillway we had supper and then repeated the hike — no Ferruginous Owl, but a Barn Owl and Great Horned Owl.  Back to our #201 campsite and wrote up the day’s log.”

Trees along the river provided habitat for orioles and other species.  Since the rain had subsided, we decided to see what might come out and begin feeding.  Soon, we not only saw an Altamira Oriole, but found Hooded Oriole (Icterus cucullatus) and the yellow and black tropical species, Audubon’s Oriole (Icterus graduacauda), formerly known as Black-headed Oriole.  Three species of orioles on a backdrop of lush green subtropical foliage, it was magnificent.

Along the dirt road below the dam, the mix of scrubland and subtropical riparian forest made for excellent birding.  We not only found a soaring Hook-billed Kite, one of the target birds for the trip, but we had good looks at both a Great Horned Owl, then a Barn Owl (Tyto alba) that we flushed from the bare ground in openings among the vegetation as we walked the through.  Both had probably pounced on some sort of small prey species prior to our arrival.  Because there are seldom crows or ravens to bother them, owls here are more active during than day than they are elsewhere.  The subject of this afternoon’s intensive search, the elusive and diminutive Ferruginous Pygmy Owl (Glaucidium brasilianum), is routinely diurnal.  Other sightings on our two walks included Turkey Vulture, Black Vulture, White-tailed Kite, Northern Bobwhite, Yellow-billed Cuckoo, Golden-fronted Woodpecker, Ladder-backed Woodpecker, Couch’s Kingbird, Brown-crested Flycatcher, Green Jay, Black-crested Titmouse, Mockingbird, Long-billed Thrasher, Great-tailed Grackle, Bronzed Cowbird, Northern Cardinal, and Painted Bunting.

The day finished as so many others had earlier during the trip—with insect-hunting Common Nighthawks calling from the skies around our campsite.

Photo of the Day

A juvenile Ring-billed Gull with a freshly caught Gizzard Shad is pursued by a hungry adult Great Black-backed Gull on the Susquehanna at Conowingo Dam.
A juvenile Ring-billed Gull with a freshly caught Gizzard Shad is pursued by a hungry adult Great Black-backed Gull on the Susquehanna at Conowingo Dam.

Shakedown Cruise of the S. S. Haldeman

First there was the Nautilus.  Then there was the Seaview.  And who can forget the Yellow Submarine?  Well, now there’s the S. S. Haldeman, and today we celebrated her shakedown cruise and maiden voyage.  The Haldeman is powered by spent fuel that first saw light of day near Conewago Falls at a dismantled site that presently amounts to nothing more than an electrical substation.  Though antique in appearance, the vessel discharges few emissions, provided there aren’t any burps or hiccups while underway.  So, climb aboard as we take a cruise up the Susquehanna at periscope depth to have a quick look around!

Brunner Island as seen from the east channel.
Close-in approach to emergent Water Willow growing on an alluvial Island.
The approach to York Haven Dam and Conewago Falls from the west channel.
A pair of Powdered Dancers on a midriver log.

Watertight and working fine.  Let’s flood the tanks and have a peek at the benthos.  Dive, all dive!

American Eelgrass, also known as Tapegrass, looks to be growing well in the channels.  Historically, vast mats of this plant were the primary food source for the thousands of Canvasback ducks that once visited the lower Susquehanna each autumn.
As is Water Stargrass (Heteranthera dubia).  When mature, both of these native plants provide excellent cover for young fish.  Note the abundance of shells from deceased Asiatic Clams (Corbicula fluminea) covering the substrate.
Mayfly nymph
A three-tailed mayfly (Ephemeroptera) nymph and a several exoskeletons cling to the downstream side of a rock.
Comb-lipped Casemaker Caddisfly larva and case.
This hollowed-out stick may be a portable protective shelter belonging to a Comb-lipped Casemaker Caddisfly larva (Calamoceratidae).  The larva itself appears to be extending from the end of the “case” in the upper right of the image.  Heteroplectron americanum, a species known for such behavior, is a possibility. 
Rusty Crayfish
In the Susquehanna and its tributaries, the Rusty Crayfish (Faxonius rusticus) is an introduced invasive species.  It has little difficulty displacing native species due to its size and aggressiveness.
Rusty Crayfish
A Rusty Crayfish.
Freshwater Snails Susquehanna: Virginian River Horn Snail
Summers with conditions that promote eelgrass and stargrass growth tend to be big years for Virginian River Horn Snails (Elimia virginica).  2022 appears to be one of those years.  They’re abundant and they’re everywhere on the rocks and gravel substrate in midriver.  Feeding almost incessantly on algae and detritus, these snails are an essential component of the riverine ecosystem, breaking down organic matter for final decomposition by bacteria and fungi.
Freshwater Snails Susquehanna: Virginian River Horn Snail
Bits of debris suspended in the flowing water streak by this Virginian River Horn Snail.  The spire-shaped shell is a streamlining adaptation for maneuvering and holding fast in the strong current.
Freshwater Snails Susquehanna: Virginian River Horn Snail
A young Virginian River Horn Snail following a mature adult.  Note the green algae growing among the decaying plant and animal remains that blanket the river bottom.
Freshwater Snails Susquehanna: Virginian River Horn Snail
Two of a population that may presently include millions of Virginian River Horn Snails living downstream of Conewago Falls.
Susquehanna Snails: Virginian River Horn Snails and Lesser Mystery Snails
Virginian River Horn Snails with Lesser Mystery Snails (Campeloma decisum), another native species commonly encountered at Conewago Falls and in surrounding waters.
Freshwater Snails Susquehanna: River Snail and Virginian River Horn Snail
A River Snail (Leptoxis carinata), also known as a Crested Mudalia, hitching a ride on a Virginian River Horn Snail.  The two species are frequently found together.
Mollusks of the Susquehanna: Yellow Lampmussel and River Snail
A River Snail cleaning the shell of a native freshwater Unionidae mussel, Lampsilis cariosa, commonly called the Yellow Lampmussel or Carried Lampmussel.  Because of their general decline in abundance and range, all Unionidae mussels are protected in Pennsylvania.
Fishes of the Susquehanna: Banded Darter
The Banded Darter (Etheostoma zonale) is a member of the perch family (Percidae).
Fishes of the Susquehanna: Smallmouth Bass
A Smallmouth Bass in strong current.
Fishes of the Susquehanna: Spotfin or Satinfin Shiners
Along the edge of an alluvial island at midriver, Cyprinella (Spotfin or Satinfin) Shiners gather in the cover of an emergent stand of Water Willow.  The closely related Spotfin Shiner (Cyprinella spiloptera) and Satinfin Shiner (Cyprinella analostanus) are nearly impossible to differentiate in the field.
Fishes of the Susquehanna: Spotfin or Satinfin Shiner
A breeding condition male Cyprinella (Spotfin or Satinfin) Shiner.
Fishes of the Susquehanna; Juvenile Channel Catfish
A juvenile Channel Catfish.

We’re finding that a sonar “pinger” isn’t very useful while running in shallow water.  Instead, we should consider bringing along a set of Pings—for the more than a dozen golf balls seen on the river bottom.  It appears they’ve been here for a while, having rolled in from the links upstream during the floods.  Interestingly, several aquatic species were making use of them.

River Snail cleaning a golf ball.
River Snail cleaning a golf ball.
Net-spinning Caddisfly (Hydropsychidae)
A golf ball used as an anchor point for silk cases woven by Net-spinning Caddisfly (Hydropsychidae) larvae to snare food from the water column.
Freshwater Snails (Gastropods) of the Lower Susquehanna River Watershed: Creeping Ancylid (Ferrissia species)
A Creeping Ancylid (Ferrissia species), a tiny gastropod also known as a Coolie Hat Snail, River Limpet, or Brook Freshwater Limpet, inhabits the dimple on a “Top Flight”.
Freshwater Snails (Gastropods) of the Lower Susquehanna River Watershed: Creeping Ancylid (Ferrissia species)
A closeup view of the Creeping Ancylid.  The shell sits atop the snail’s body like a helmet.
We now know why your golf balls always end up in the drink, it’s where they go to have their young.

Well, it looks like the skipper’s tired and grumpy, so that’s all for now.  Until next time, bon voyage!

Conowingo Dam: Cormorants, Eagles, Snakeheads and a Run of Hickory Shad

Meet the Double-crested Cormorant,  a strangely handsome bird with a special talent for catching fish.  You see, cormorants are superb swimmers when under water—using their webbed feet to propel and maneuver themselves with exceptional speed in pursuit of prey.

Like many species of birds that dive for their food, Double-crested Cormorants run across the surface of the water to gain speed for a takeoff.  Smaller wings may make it more difficult to get airborne, but when folded, they provide improved streamlining for submerged swimming.

Double-crested Cormorants, hundreds of them, are presently gathered along with several other species of piscivorous (fish-eating) birds on the lower Susquehanna River below Conowingo Dam near Rising Sun, Maryland.  Fish are coming up the river and these birds are taking advantage of their concentrations on the downstream side of the impoundment to provide food to fuel their migration or, in some cases, to feed their young.

Double-crested Cormorants, mostly adult birds migrating toward breeding grounds to the north, are gathered on the rocks on the east side of the river channel below Conowingo Dam.  A Great Blue Heron from a nearby rookery can be seen at the center of the image.
Bald Eagles normally gather in large numbers at Conowingo Dam in the late fall and early winter.  Presently there are more than 50 there, and the majority of them are breeding age adults.  Presumably they are still on their way north to nest.  Meanwhile, local pairs are already feeding young, so it seems these transient birds are running a bit late.  Many of them can be seen on the rocks along the east side of the river channel,…
…on the powerline trestles on the island below the dam…
…in the trees along the east shore,…
…and in the trees surrounding Fisherman’s Park on the west shore.

In addition to the birds, the movements of fish attract larger fish, and even larger fishermen.

Anglers gather to fish the placid waters below the dam’s hydroelectric powerhouse .  Only a few of the generating turbines are operating, so the flow through the dam is minimal.
Some water is being released along the west shoreline to attract migratory river herring to the west fish lift for sorting and retention as breeding stock for a propagation program.  The east lift, the passage that hoists American Shad (Alosa sapidissima) to a trough that allows them to swim over the top of the dam to waters upriver, will begin operating as soon as these larger migratory fish begin arriving.

The excitement starts when the sirens start to wail and the red lights begin flashing.  Yes friends, it’s showtime.

Red lights and sirens are a warning that additional flow is about to be released from the dam.  Boaters should anticipate rough water and persons in and along the river need to seek higher ground immediately.
Gates are opened at mid-river to release a surge of water through the dam.
The wake from the release quickly reaches the shoreline, raising the water level in moments.
Experienced anglers know that the flow through the dam gets fish moving and can improve the catch significantly, especially in spring when many species are ascending the river.

Within minutes of the renewed flow, birds are catching fish.

A Double-crested Cormorant with a young Channel Catfish (Ictalurus punctatus).
A Double-crested Cormorant fleeing others trying to steal its Channel Catfish.
Another Double-crested Cormorant eating a Channel Catfish.  Did you realize that Channel Catfish were an introduced species in the Susquehanna River system?
An Osprey with a stick, it’s too busy building a nest right now to fish.
Great Blue Herons swallow their prey at the spot of capture, then fly back to the nest to regurgitate a sort of “minced congealed fish product” to their young.

Then the anglers along the wave-washed shoreline began catching fish too.

This young man led off a flurry of catches that would last for the remainder of the afternoon.
Though Gizzard Shad are filter feeders that don’t readily take baits and lures, they are regularly foul-hooked and reeled in from the large schools that ascend the river in spring.
Gizzard Shad are very abundant in the lower Susquehanna, providing year-round forage for many species of predatory animals including Bald Eagles.
A Double-crested Cormorant swallowing a Gizzard Shad.
This angler soon helped another fisherman by landing his large catch, a Northern Snakehead (Channa argus).
The teeth of a Northern Snakehead are razor sharp.  It is an aggressive non-native invasive species currently overtaking much of the Lower Susquehanna River Watershed.  Anglers are encouraged to fish for them, catch them, keep them, and kill them at the site of capture.  Never transport a live Northern Snakehead  anywhere at any time.  It is illegal in both Maryland and Pennsylvania to possess a live snakehead. 
Northern Snakehead advisory sign posted at Exelon Energy’s Conowingo Fishermen’s Park.
A stringer of Northern Snakeheads.  This species was imported from Asia as a food fish, so it has excellent culinary possibilities.  It’s better suited for a broiler or frying pan than a river or stream.
Another stringer of Northern Snakeheads.  It’s pretty safe to say that they have quickly become one of the most abundant predatory fish in the river.  Their impact on native species won’t be good, so catch and eat as many as you can.  Remember, snakeheads swim better in butter and garlic than in waters with native fish.
This foul-hooked Shorthead Redhorse (Moxostoma macrolepidotum), a native species of sucker, was promptly released.
Striped Bass are anadromous fish that leave the sea in spring to spawn in fresh water.  They ascend the Susquehanna in small numbers, relying upon the operation of the fish passages at the Conowingo, Holtwood, Safe Harbor, and York Haven Dams to continue their journey upstream.  During spring spawning, Striped Bass in the Susquehanna River and on the Susquehanna Flats portion of the upper Chesapeake Bay are not in season and may not be targeted, even for catch-and-release.  This accidental catch was immediately turned loose.
After removal from the hook, this hefty Smallmouth Bass was returned to the river.  Many anglers are surprised to learn that Smallmouth Bass are not native to the Susquehanna basin.
This angler’s creel contains a Northern Snakehead (left) and a Walleye (right).  Did you know that the Walleye (Sander vitreus) is an introduced species in the Susquehanna watershed?
By late afternoon, anglers using shad darts began hooking into migrating Hickory Shad (Alosa mediocris), a catch-and-release species in Maryland.
Hickory Shad are recognized by their lengthy lower jaw.  They are anadromous herring that leave the sea to spawn in freshwater streams.  Hickory Shad ascend the Susquehanna as far as Conowingo Dam each year, but shy away from the fish lifts.  Downriver from the dam, they do ascend Deer Creek along the river’s west shore and Octoraro Creek on the east side.  In Pennsylvania, the Hickory Shad is an endangered species.
A Hickory Shad angled on a dual shad dart rig.  During the spring spawning run, they feed mostly on small fish, and are the most likely of the Susquehanna’s herring to take the hook.
Simultaneous hook-ups became common after fours hours worth of release water from the dam worked its way toward the mouth of the river and got the schools moving.  Water temperatures in the mid-to-upper-fifties trigger the ascent of Hickory Shad.  On the Susquehanna, those temperatures were slow to materialize in the spring of 2021, so the Hickory Shad migration is a bit late.
Catch-and-release fishing for Hickory Shad appears to be in full swing not only at the dam, but along the downstream shoreline to at least the mouth of Deer Creek at Susquehanna State Park too.
Many Hickory Shad could be seen feeding on some of the millions of caddisflies (Trichoptera) swarming on the river.  These insects, along with earlier hatches of Winter Stoneflies (Taeniopterygidae), not only provide forage for many species of fish, but  are a vital source of natural food for birds that migrate up the river in March and April each year.  Swallows, Ring-billed Gulls, and Bonaparte’s Gulls are particularly fond of snatching them from the surface of the water.
A Winter Stonefly (Taeniopterygidae) from an early-season hatch on the Susquehanna River at the Veteran’s Memorial Bridge at Columbia/Wrightsville, Pennsylvania.  (March 3, 2021)
Just below Conowingo Dam, a lone fly fisherman was doing a good job mimicking the late-April caddisfly hatch, successfully reeling in numerous surface-feeding Hickory Shad.
You may have noticed the extraordinary number of introduced fish species listed in this account of a visit to Conowingo Dam.  Sorry to say that there are two more: the Flathead Catfish (Pylodictis olivaris) and the Blue Catfish (Ictalurus furcatus).  Like the Northern Snakehead, each has become a plentiful invasive species during recent years.  Unlike the Northern Snakehead, these catfish are “native transplants”, species introduced from populations in the Mississippi River and Gulf Slope drainages of the United States.  So if you visit the area, consider getting a fishing license and catching a few.  Like the snakeheads, they too are quite palatable.

The arrival of migrating Hickory Shad heralds the start of a movement that will soon include White Perch, anadromous American Shad, and dozens of other fish species that swim upstream during the springtime.  Do visit Fisherman’s Park at Conowingo Dam to see this spectacle before it’s gone.  The fish and birds have no time to waste, they’ll soon be moving on.

To reach Exelon’s Conowingo Fisherman’s Park from Rising Sun, Maryland, follow U.S. Route 1 south across the Conowingo Dam, then turn left onto Shuresville Road, then make a sharp left onto Shureslanding Road.  Drive down the hill to the parking area along the river.  The park’s address is 2569 Shureslanding Road, Darlington, Maryland.

A water release schedule for the Conowingo Dam can be obtained by calling Exelon Energy’s Conowingo Generation Hotline at 888-457-4076.  The recording is updated daily at 5 P.M. to provide information for the following day.

And remember, the park can get crowded during the weekends, so consider a weekday visit.

2020: A Good Year

You say you really don’t want to take a look back at 2020?  Okay, we understand.  But here’s something you may find interesting, and it has to do with the Susquehanna River in 2020.

As you may know, the National Weather Service has calculated the mean temperature for the year 2020 as monitored just upriver from Conewago Falls at Harrisburg International Airport.  The 56.7° Fahrenheit value was the highest in nearly 130 years of monitoring at the various stations used to register official climate statistics for the capital city.  The previous high, 56.6°, was set in 1998.

Though not a prerequisite for its occurrence, record-breaking heat was accompanied by a drought in 2020.  Most of the Susquehanna River drainage basin experienced drought conditions during the second half of the year, particularly areas of the watershed upstream of Conewago Falls.  A lack of significant rainfall resulted in low river flows throughout late summer and much of the autumn.  Lacking water from the northern reaches, we see mid-river rocks and experience minimal readings on flow gauges along the lower Susquehanna, even if our local precipitation happens to be about average.

Back in October, when the river was about as low as it was going to get, we took a walk across the Susquehanna at Columbia-Wrightsville atop the Route 462/Veteran’s Memorial Bridge to have a look at the benthos—the life on the river’s bottom.

As we begin our stroll across the river, we quickly notice Mallards and a Double-crested Cormorant (far left) feeding among aquatic plants.  You can see the leaves of the vegetation just breaking the water’s surface, particularly behind the feeding waterfowl.  Let’s have a closer look.
An underwater meadow of American Eelgrass (Vallisneria americana) as seen from atop the Veteran’s Memorial Bridge at Columbia-Wrightsville.  Also known as Freshwater Eelgrass, Tapegrass, and Wild Celery, it is without a doubt the Susquehanna’s most important submerged aquatic plant.  It grows in alluvial substrate (gravel, sand, mud, etc.) in river segments with moderate to slow current.  Water three to six feet deep in bright sunshine is ideal for its growth, so an absence of flooding and the sun-blocking turbidity of muddy silt-laden water is favorable.
Plants in the genus Vallisneria have ribbon-like leaves up to three feet in length that grow from nodes rooted along the creeping stems called runners.  A single plant can, over a period of years, spread by runners to create a sizable clump or intertwine with other individual plants to establish dense meadows and an essential wildlife habitat.
An uprooted segment of eelgrass floats over a thick bed of what may be parts of the same plant.  Eelgrass meadows on the lower Susquehanna River were decimated by several events: deposition of anthracite coal sediments (culm) in the late-nineteenth and early-twentieth centuries, dredging of the same anthracite coal sediments during the mid-twentieth century, and the ongoing deposition of sediments from erosion occurring in farm fields, logged forests, abandoned mill ponds, and along denuded streambanks.  Not only has each of these events impacted the plants physically by either burying them or ripping them out by the roots, each has also contributed to the increase in water turbidity (cloudiness) that blocks sunlight and impairs their growth and recovery.
A submerged log surrounded by beds of eelgrass forms a haven for fishes in sections of the river lacking the structure found in rock-rich places like Conewago Falls.  A period absent of high water and sediment runoff extended through the growing season in 2020 to allow lush clumps of eelgrass like these to thrive and further improve water quality by taking up nutrients, particularly nitrogen and phosphorus.  Nutrients used by vascular plants including eelgrass become unavailable for feeding detrimental algal blooms in downstream waters including Chesapeake Bay.
Small fishes and invertebrates attract predatory fishes to eelgrass beds.  We watched this Smallmouth Bass leave an ambush site among eelgrass’s lush growth to shadow a Common Carp as it rummaged through the substrate for small bits of food.  The bass would snatch up crayfish that darted away from the cover of stones disturbed by the foraging carp.
Sunfishes are among the species taking advantage of eelgrass beds for spawning.  They’ll build a nest scrape in the margins between clumps of plants allowing their young quick access to dense cover upon hatching.  The abundance of invertebrate life among the leaves of eelgrass nourishes feeding fishes, and in turn provides food for predators including Bald Eagles, this one carrying a freshly-caught Bluegill.

These improvements in water quality and wildlife habitat can have a ripple effect.  In 2020, the reduction in nutrient loads entering Chesapeake Bay from the low-flowing Susquehanna may have combined with better-than-average flows from some of the bay’s lesser-polluted smaller tributaries to yield a reduction in the size of the bay’s oxygen-deprived “dead zones”.  These dead zones typically occur in late summer when water temperatures are at their warmest, dissolved oxygen levels are at their lowest, and nutrient-fed algal blooms have peaked and died.  Algal blooms can self-enhance their severity by clouding water, which blocks sunlight from reaching submerged aquatic plants and stunts their growth—making quantities of unconsumed nutrients available to make more algae.  When a huge biomass of algae dies in a susceptible part of the bay, its decay can consume enough of the remaining dissolved oxygen to kill aquatic organisms and create a “dead zone”.  The Chesapeake Bay Program reports that the average size of this year’s dead zone was 1.0 cubic miles, just below the 35-year average of 1.2 cubic miles.

Back on a stormy day in mid-November, 2020, we took a look at the tidal freshwater section of Chesapeake Bay, the area known as Susquehanna Flats, located just to the southwest of the river’s mouth at Havre de Grace, Maryland.  We wanted to see how the restored American Eelgrass beds there might have fared during a growing season with below average loads of nutrients and life-choking sediments spilling out of the nearby Susquehanna River.  Here’s what we saw.

We followed the signs from Havre de Grace to Swan Harbor Farm Park.
Harford County Parks and Recreation’s Swan Harbor Farm Park consists of a recently-acquired farming estate overlooking the tidal freshwater of Susquehanna Flats.
Along the bay shore, a gazebo and a fishing pier have been added.  Both provide excellent observation points.
The shoreline looked the way it should look on upper Chesapeake Bay, a vegetated buffer and piles of trees and other organic matter at the high-water line.  There was less man-made garbage than we might find following a summer that experienced an outflow from river flooding, but there was still more than we should be seeing.
Judging by the piles of fresh American Eelgrass on the beach, it looks like it’s been a good year.  Though considered a freshwater plant, eelgrass will tolerate some brackish water, which typically invades upper Chesapeake Bay each autumn due to a seasonal reduction in freshwater inflow from the Susquehanna and other tributaries.  Saltwater can creep still further north when the freshwater input falls below seasonal norms during years of severe drought.  The Susquehanna Flats portion of the upper bay very rarely experiences an invasion by brackish water; there was none in 2020.
As we scanned the area with binoculars and a spotting scope, a raft of over one thousand ducks and American Coots (foreground) could be seen bobbing among floating eelgrass leaves and clumps of the plants that had broken away from their mooring in the mud.  Waterfowl feed on eelgrass leaves and on the isopods and other invertebrates that make this plant community their home.
While coots and grebes seemed to favor the shallower water near shore, a wide variety of both diving and dabbling ducks were widespread in the eelgrass beds more distant.  Discernable were Ring-necked Ducks, scaup, scoters, Long-tailed Ducks, Redheads, American Wigeons, Gadwall, Ruddy Ducks, American Black Ducks, and Buffleheads.

We noticed a few Canvasbacks (Aythya valisineria) on the Susquehanna Flats during our visit.  Canvasbacks are renowned as benthic feeders, preferring the tubers and other parts of submerged aquatic plants (a.k.a. submersed aquatic vegetation or S.A.V.) including eelgrass, but also feeding on invertebrates including bivalves.  The association between Canvasbacks and eelgrass is reflected in the former’s scientific species name valisineria, a derivitive of the genus name of the latter, Vallisneria.

Canvasbacks on Chesapeake Bay.  (United States Fish and Wildlife Service image by Ryan Hagerty)

The plight of the Canvasback and of American Eelgrass on the Susquehanna River was described by Herbert H. Beck in his account of the birds found in Lancaster County, Pennsylvania, published in 1924:

“Like all ducks, however, it stops to feed within the county less frequently than formerly, principally because the vast beds of wild celery which existed earlier on broads of the Susquehanna, as at Marietta and Washington Borough, have now been almost entirely wiped out by sedimentation of culm (anthracite coal waste).  Prior to 1875 the four or five square miles of quiet water off Marietta were often as abundantly spread with wild fowl as the Susquehanna Flats are now.”

Beck quotes old Marietta resident and gunner Henry Zink:

“Sometimes there were as many as 500,000 ducks of various kinds on the Marietta broad at one time.”

The abundance of Canvasbacks and other ducks on the Susquehanna Flats would eventually plummet too.  In the 1950s, there were an estimated 250, 000 Canvasbacks wintering on Chesapeake Bay, primarily in the area of the American Eelgrass, a.k.a. Wild Celery, beds on the Susquehanna Flats.  When those eelgrass beds started disappearing during the second half of the twentieth century, the numbers of Canvasbacks wintering on the bay took a nosedive.  As a population, the birds moved elsewhere to feed on different sources of food, often in saltier estuarine waters.

Canvasbacks were able to eat other foods and change their winter range to adapt to the loss of habitat on the Susquehanna River and Chesapeake Bay.  But not all species are the omnivores that Canvasbacks happen to be, so they can’t just change their diet and/or fly away to a better place.  And every time a habitat like the American Eelgrass plant community is eliminated from a region, it fragments the range for each species that relied upon it for all or part of its life cycle.  Wildlife species get compacted into smaller and smaller suitable spaces and eventually their abundance and diversity are impacted.  We sometimes marvel at large concentrations of birds and other wildlife without seeing the whole picture—that man has compressed them into ever-shrinking pieces of habitat that are but a fraction of the widespread environs they once utilized for survival.  Then we sometimes harass and persecute them on the little pieces of refuge that remain.  It’s not very nice, is it?

By the end of 2020, things on the Susquehanna were getting back to normal.  Near normal rainfall over much of the watershed during the final three months of the year was supplemented by a mid-December snowstorm, then heavy downpours on Christmas Eve melted it all away.  Several days later, the Susquehanna River was bank full and dishing out some minor flooding for the first time since early May.  Isn’t it great to get back to normal?

The rain-and-snow-melt-swollen Susquehanna from Chickies Rock looking upriver toward Marietta during the high-water crest on December 27th.
Cresting at Columbia as seen from the Route 462/Veteran’s Memorial Bridge.  A Great Black-backed Gull monitors the waters for edibles.
All back to normal on the Susquehanna to end 2020.
Yep, back to normal on the Susquehanna.  Maybe 2021 will turn out to be another good year, or maybe it’ll  just be a Michelin or Firestone.

SOURCES

Beck, Herbert H.  1924.  A Chapter on the Ornithology of Lancaster County, Pennsylvania.  The Lewis Historical Publishing Company.  New York, NY.

White, Christopher P.  1989.  Chesapeake Bay, Nature of the Estuary: A Field Guide.  Tidewater Publishers.  Centreville, MD.

Bald Eagles Arriving at Conowingo Dam

You need to see this to believe it—dozens, sometimes hundreds, of Bald Eagles doing their thing and you can stand or sit in just one place to take it all in.

Conowingo Dam on the Susquehanna River near Darlington, Maryland, attracts piscivores galore.  Young Gizzard Shad (Dorosoma cepedianum) and other small fishes are temporarily stunned as they pass through the turbines and gated discharges at the hydroelectric facility’s power house.  Waiting for them in the rapids below are predatory fishes including Striped Bass (Morone saxatilis), White Perch (Morone americana), several species of catfishes, and more.  From above, fish-eating birds are on the alert for a disoriented turbine-traveler they can easily seize for a quick meal.

U.S. Route 1 crosses the Susquehanna River atop the Conowingo Dam.  Conowingo Fisherman’s Park, the observation site for the dam’s Bald Eagles and other birds, is located downstream of the turbine building along the river’s west (south) shore.  As the name implies, the park is a superb location for angling.
Heed this warning.  Close your windows and sunroof or the vultures will subject your vehicle’s contents to a thorough search for food.  Then they’ll deposit a little consolation prize on your paint.
Scavenging Black Vultures congregate by the hundreds at Conowingo Dam to clean up the scraps left behind by people and predators.  They’ll greet you right in the parking lot.
Photographers line up downstream of the turbine building for an opportunity to get the perfect shot of a Bald Eagle.
The operator of the Conowingo Hydroelectric Generating Station, Exelon Energy, provides clean comfortable facilities for fishing, sightseeing, and wildlife observation.
There’s almost always a Peregrine Falcon zooming around the dam to keep the pigeons on their toes.
Double-crested Cormorants on the boulders that line the channel below the dam.  Hundreds are there right now.
Double-crested Cormorants dive for fish near the power house discharge, which, while just one small generator is operating, seems nearly placid.  The feeding frenzy really gets going when Conowingo begins generating with multiple large turbines and these gently flowing waters become torrential rapids filled with disoriented fishes.
Ring-billed Gulls seek to snag a small fish from the water’s surface.
After successfully nabbing shad or perch, these Double-crested Cormorants need to swallow their catch fast or risk losing it.  Stealing food is a common means of survival for the gulls, eagles, and other birds found here.
Where do migrating eagles go?  There are, right now, at least 50 Bald Eagles at Conowingo Dam, with more arriving daily.  Numbers are likely to peak during the coming weeks.
Eagles can be seen perched in the woods along both river shorelines, even in the trees adjacent to the Conowingo Fisherman’s Park car lot.  Others take stand-by positions on the boulders below the dam.
To remind visiting eagles that they are merely guests at Conowingo, a resident Bald Eagle maintains a presence at its nest on the wooded slope above Fisherman’s Park.  Along the lower Susquehanna, female Bald Eagles lay eggs and begin incubation in January.
When an eagle decides to venture out and attempt a dive at a fish, that’s when the photographers rush to their cameras for a chance at a perfect shot.
The extraordinary concentrations of Bald Eagles at Conowingo make it an excellent place to study the plumage differences between birds of various ages.
Here’s a first-year Bald Eagle, also known as a hatch-year or juvenile bird.
A second-year or Basic I immature Bald Eagle.  Note the long juvenile secondaries giving the wings a ragged-looking trailing edge.
A third-year or Basic II immature Bald Eagle.
A second-year/Basic I immature Bald Eagle (top) and a third-year/Basic II immature Bald Eagle (bottom).
A second-year/Basic I immature Bald Eagle (bottom) and a third-year/Basic II immature Bald Eagle (top).  Note the white feathers on the backs of eagles in these age classes.
A third-year/Basic II immature Bald Eagle perched in a tree alongside the parking area.  Note the Osprey-like head plumage.
A sixth-year or older adult Bald Eagle in definitive plumage (left) and a fourth-year or Basic III immature Bald Eagle (right).
If you want to see the Bald Eagles at Conowingo Dam, don’t wait.  While many birds are usually present throughout the winter, the large concentrations may start dispersing as early as December when eagles begin wandering in search of other food sources, particularly if the river freezes.
A pair of Bald Eagles is already working on a nest atop this powerline trestle downstream of Conowingo Dam.  By late December, most adult eagles will depart Conowingo to begin spending their days establishing and defending breeding territories elsewhere.  Any non-adult eagles still loitering around the dam will certainly begin receiving encouragement from the local nesting pair(s) to move along as well.

To reach Exelon’s Conowingo Fisherman’s Park from Rising Sun, Maryland, follow U.S. Route 1 south across the Conowingo Dam, then turn left onto Shuresville Road, then make a sharp left onto Shureslanding Road.  Drive down the hill to the parking area along the river.  The park’s address is 2569 Shureslanding Road, Darlington, Maryland.

As Bald Eagle numbers continue to increase, expect the parking lot to become full during weekends and over the Thanksgiving holiday.  To avoid the crowds, plan to visit during a weekday.

You can get the generating schedule for the Conowingo Dam by calling the Conowingo Generation Hotline at 888-457-4076.  The recording is updated daily at 5 P.M. to provide information for the following day.

How Much Can a Bald Eagle Lift?

Here it is—just as it happened, recently in the lower Susquehanna valley.

A Bald Eagle in search of a meal.
The eagle glides in and grabs an unsuspecting Common Carp, the bird’s momentum and a head wind helping it to raise the fish out of the water.  This particular carp appears to be eighteen to twenty-four inches in length.  In that range, it could weigh anywhere from four to ten pounds or more.
But as the eagle tries to flap its wings to carry the carp skyward, it loses lift, and the weight of the fish drags the raptor down.  A carp exceeding twenty inches in length usually weighs more than five pounds, approximately half the mass of a male (about 9 lbs.) or a female (about 12 lbs.) Bald Eagle.  From a dead stop, trying to extricate a submerged fish weighing half as much again as it does is an impossible task for this or any other Bald Eagle.
The eagle fights briefly to pull the carp from the water, then abandons the effort to instead release its talons from the fish to prevent its own demise by drowning.
Free of its hold on the carp, the eagle flaps its wings briskly to get up and out of the potentially deadly situation.
Success!
Both the eagle and, presumably, the carp survive the encounter.
The eagle finds a nearby tree limb where it takes a much-needed break from fishing.
Such an event may have been fatal to an inexperienced younger Bald Eagle.  Though not an adult, this bird is no spring chicken.  Its plumage, particularly its white head with a dark line through the eye (often called an “osprey face”), is indicative of a bird in its fourth year of life.  By this time next year, it should be sporting a full set of adult feathers.  In the meantime, it should stick to eating suckers; there are plenty of those to go around.
Common Carp are classified as a minnow (Cyprinidae).  They are indigenous to Europe and are raised as a food fish in many parts of the world.  In the Lower Susquehanna River Watershed, Common Carp are an introduced species with negative impacts on native fisheries.  Those exceeding twenty inches in length begin to gain girth and weight, sometimes reaching thirty pounds at thirty inches.

SOURCES

Sedaghat, Safoura, Seyed Abbas Hoseini, Mohammad Larijani, and Khadijeh Shamekhi Ranjbar.  2013.  “Age and Growth of Common Carp (Cyprinus carpio Linnaeus, 1758) in Southern Caspian Sea, Iran”.  World Journal of Fish and Marine Sciences.  5:1.  pp.71-73.

Shocking Fish Photos!

There are two Conewago Creek systems in the Lower Susquehanna River Watershed.  One drains the Gettysburg Basin west of the river, mostly in Adams and York Counties, then flows into the Susquehanna at the base of Conewago Falls.  The other drains the Gettysburg Basin east of the river, flowing through Triassic redbeds of the Gettysburg Formation and York Haven Diabase before entering Conewago Falls near the south tip of Three Mile Island.  Both Conewago Creeks flow through suburbia, farm, and forest.  Both have their capacity to support aquatic life impaired and diminished by nutrient and sediment pollution.

This week, some of the many partners engaged in a long-term collaboration to restore the east shore’s Conewago Creek met to have a look at one of the prime indicators of overall stream habitat health—the fishes.  Kristen Kyler of the Lower Susquehanna Initiative organized the effort.  Portable backpack-mounted electrofishing units and nets were used by crews to capture, identify, and count the native and non-native fishes at sampling locations which have remained constant since prior to the numerous stream improvement projects which began more than ten years ago.  Some of the present-day sample sites were first used following Hurricane Agnes in 1972 by Stambaugh and Denoncourt and pre-date any implementation of sediment and nutrient mitigation practices like cover crops, no-till farming, field terracing, stormwater control, nutrient management, wetland restoration, streambank fencing, renewed forested stream buffers, or modernized wastewater treatment plants.  By comparing more recent surveys with this baseline data, it may be possible to discern trends in fish populations resulting not only from conservation practices, but from many other variables which may impact the Conewago Creek Warmwater Stream ecosystem in Dauphin, Lancaster, and Lebanon Counties.

So here they are.  Enjoy these shocking fish photos.

Matt Kofroth, Watershed Specialist with the Lancaster County Conservation District, operates the electrofishing wand in Conewago Creek while his team members prepare to net and collect momentarily-stunned fish.  Three other electrofishing units operated by staff from the Susquehanna River Basin Commission and aided by teams of netters were in action at other sample locations along the Conewago on this day.
Really big fish, such as this Common Carp (Cyprinus carpio), were identified, counted, and immediately returned to the water downstream of the advancing electrofishing team.  Koi of the garden pond are a familiar variety of Common Carp, a native of Asia.
Other fish, such as the Swallowtail Shiner, Redbreast Sunfish (Lepomis auritus), Fallfish, and suckers seen here,  were placed in a sorting tank.
Fallfish (Semotilus corporalis) are very active and require plenty of dissolved oxygen in the water to survive.  Fallfish, Rainbow Trout (Oncorhynchus mykiss), and Smallmouth Bass (Micropterus dolomieu) were quickly identified and removed from the sorting tank for release back into the stream.  Other larger, but less active fish, including suckers, quickly followed.
Small fish like minnows were removed from the sorting tank for a closer look in a hand-held viewing tank.  This Fathead Minnow (Pimephales promelas) was identified, added to the tally sheet, and released back into the Conewago.  The Fathead Minnow is not native to the Susquehanna drainage.  It is the minnow most frequently sold as bait by vendors.
A breeding condition male Bluntnose Minnow (Pimephales notatus).
The Cutlips Minnow (Exoglossum maxillingua) is a resident of clear rocky streams.  Of the more than 30 species collected during the day, two native species which are classified as intolerant of persisting stream impairment were found: Cutlips Minnow and Swallowtail Shiner.
The Central Stoneroller (Campostoma anomalum) is a benthic feeder in creeks over gravel and sand.
The Eastern Blacknose Dace (Rhinichthys atratulus) is found in clear water over pebble and stone substrate.
The Longnose Dace (Rhinichthys cataractae) is another species of pebbly rocky streams.
A juvenile Golden Shiner (Notemigonus crysoleucas).  Adults lack the side stripe and grow to the size of a sunfish.
A Swallowtail Shiner (Notropis procne) and a very young White Sucker (Catostomus commersonii) in the upper left of the tank.
A probable Spotfin Shiner (Cyprinella spiloptera).
A breeding male Cyprinella shiner, probably a Spotfin Shiner.  Show-off!
The Margined Madtom (Noturus insignis) is a small native catfish of pebbly streams.
The Banded Killifish (Fundulus diaphanus) is adept at feeding upon insects, including mosquitos.
A young Rock Bass (Ambloplites rupestris).  This species was introduced to the Susquehanna and its tributaries.
The Greenside Darter (Etheostoma blennioides) is not native to the Susquehanna basin.  The species colonized the Conewago Creek (east) from introduced local populations within the last five years.
The Tessellated Darter (Etheostoma olmstedi) is a native inhabitant of the Susquehanna and its tributaries.
The stars of the day were the American Eels (Anguilla rostrata).
After collection, each eel was measured and weighed using a scale and dry bucket.  This specimen checked in at 20 inches and one pound before being released.
Prior to the construction of large dams, American Eels were plentiful in the Susquehanna and its tributaries, including the Conewago.  They’ve since been rarities for more than half a century.  Now they’re getting a lift.
American Eels serve as an intermediate host for the microscopic parasitic glochidia (larvae) of the Eastern Elliptio (Elliptio complanata), a declining native freshwater mussel of the Lower Susquehanna River Watershed.  While feeding on their host (usually in its gills), the glochidia cause little injury and soon drop off to continue growth, often having assured distribution of their species by accepting the free ride.  Freshwater mussels are filter feeders and improve water quality.  They grow slowly and can live for decades.
American Eels are a catadromous species, starting life as tiny glass eels in the saltwater of the Atlantic Ocean, then migrating to tidal brackish marshes and streams (males) or freshwater streams (females) to mature.  This 20-incher probably attempted to ascend the Susquehanna as an elver in 2016 or 2017.  After hitching a ride with some friendly folks, she bypassed the three largest dams on the lower Susquehanna (Conowingo, Holtwood, and Safe Harbor) and arrived in the Conewago where she may remain and grow for ten years or more.  To spawn, a perilous and terminally fatal journey to the Sargasso Sea awaits her.  (You may better know the area of the Sargasso Sea as The Bermuda Triangle…a perilous place to travel indeed!)

SOURCES

Normandeau Associates,  Inc. and Gomez and Sullivan.  2018.  Muddy Run Pumped Storage Project Conowingo Eel Collection Facility FERC Project 2355.  Prepared for Exelon.

Stambaugh, Jr., John W., and Robert P. Denoncourt.  1974.  A Preliminary Report on the Conewago Creek Faunal Survey, Lancaster County, Pennsylvania.  Proceedings of the Pennsylvania Academy of Sciences.  48: 55-60.