Rocket Science

Fifty years ago, the world’s attention was fixed on the fate of the Apollo 13 astronauts—Commander Jim Lovell, Lunar Module Pilot Fred Haise, and Command Module Pilot Jack Swigert—after an explosion disabled their spacecraft and changed a mission to explore the moon into an improvised operation to return them safely to the earth.  Perhaps this anniversary comes at a fortuitous time.  The story of Apollo 13 may have parallels and lessons pertinent to present-day events and the concerns of people in America and around the world.

In April, 1970, Jack Swigert was a last-minute replacement for the original Apollo 13 Command Module Pilot Ken Mattingly after Mattingly was exposed to German measles (rubella) prior to the mission.  Mattingly had been training with fellow backup crew members John Young and Charles Duke when Duke came down with the disease after he and his family had visited friends whose three-year-old son was suffering the effects of the infection.  NASA was wary of contagions that could spread among the astronauts while isolated in a space capsule during a lengthy journey, possibly incapacitating the entire crew.  Tests on the astronauts found that Mattingly, like Duke, had lacked antibodies to the rubella virus and could therefore become ill during the flight.  Mattingly alone could get sick—Lovell and Haise, possessing resistance to rubella, could not.  Nevertheless, the decision was made to substitute Swigert for Mattingly.  Swigert proved competent for the late change partly because he had developed many of the emergency procedures for operating the Command Module.  Mattingly, who never did get measles, along with Duke and Young, would be the crew for the Apollo 16 moon landing in April, 1972.

NASA preflight meeting discussing the replacement of Mattingly with Swigert just before the launch.  Left to right: Chief of Flight Operations Donald “Deke” Slayton, Lovell, Mattingly, and Swigert. (NASA image)

Apollo 13  was launched as scheduled on April 11, 1970, at 2:13 P.M. E.S.T. and was on its way to a planned third landing on the lunar surface.

Launch of Apollo 13 using the Saturn V, the most powerful rocket ever flown.  The Command Module would use the call sign “Odyssey”, the Lunar Module “Aquarius”. (NASA image)

After two successful landings, network television found no sensation in the story of yet another trip to the moon.  There was little coverage of the mission’s first fifty-five hours.  Then, fifty-five hours and just more than fifty-five minutes into the flight, and just two minutes after fulfilling Mission Control’s request to turn on fans to stir the oxygen tanks so that their contents could be measured, Jack Swigert radioed, “Okay, Houston, we’ve had a problem here.”  Then Lovell repeated his message, “Houston, we’ve had a problem.”  Within a minute, Fred Haise was listing some metering anomalies and alarm activations for Mission Control and added, “And we had a pretty large bang associated with the caution and warning there.”  Apollo 13 was about 205,000 miles from earth—it was just after 10 P.M. E.S.T., April 13, 1970.

Thirteen minutes after the “bang”, Lovell radioed Mission Control while looking out the capsule’s window, “We are venting something out into the…into space.”  Apollo 13 was losing it’s oxygen, and its electric supplies.  They didn’t know it at the time, but oxygen tank number two had exploded and damaged either a valve or tubing on tank number one—the Command Module’s only other source of oxygen—and both were losing their contents into space.  Two of the three fuel cells had failed as well.  Without oxygen, the remaining fuel cell in the Service Module would fail to make electricity for operation of the Command Module.  Worse yet, the astronauts would not be able to breathe.  Without delay, engineers and scientists on the ground went into action to develop alternatives to the original flight plan.

The damage caused to the Service Module by the explosion of oxygen tank #2 wasn’t visible until it was jettisoned about five hours before Apollo 13 reached earth.  (NASA image)

Power in the Command Module had to be conserved for reentry, so with just fifteen minutes of electricity remaining, Lovell and Haise moved into the “lifeboat”, the Lunar Module, and began powering it up while Swigert finished shutting down the systems aboard Odyssey to conserve its remaining energy for the end of the mission.  Haise, who had spent fourteen months at Grumman’s manufacturing facility on Long Island, was intimately familiar with the Lunar Module’s operating systems.  He powered-up essential systems and began calculating whether the consumables on Aquarius would last for the time it would take to go around the moon and “slingshot” back to earth.

To change the course of Apollo 13 from a moon orbit trajectory to one that would whip around the back of the moon and send them home, Lovell used the Lunar Module’s descent engine to perform a 35-second-long course correction burn.  This burn commenced five hours after the explosion at 3:43 A.M. E.S.T. on the morning of April 14.  Apollo 13 was then on a free-return trajectory to loop around the moon and return to earth.

Haise had in his possession notes from previous missions which he consulted to determine that they would run out of water about five hours before returning to earth.  Fortunately, his notes also showed that the spacecraft’s mechanical systems could remain viable without water cooling for seven or eight hours.  Astronauts reduced their water intake to six ounces a day, one fifth of normal, and attempted to compensate by drinking fruit juices and eating wet-packed hot dogs and similar foods.  Their efforts to conserve water succeeded, but did lead to the crew becoming dehydrated.

For breathing, there was a sufficient supply of oxygen in the Lunar Module ascent stage where the astronauts would be taking refuge for the remaining four days of the journey.  As a backup, there was oxygen in the two suits that were intended for the moonwalk and two more tanks in the ascent stage of Aquarius.  Less than half of the oxygen supply was used during the return trip.

Procedures worked out by engineers and tested in a simulator on the ground allowed the crew to use only one fifth of the power normally required during the Lunar Module’s intended forty-five hours of useful life, thus enabling its batteries to last for a ninety-hour-long return trip and add charge to the Command Module batteries—with some energy to spare.  To make it back to earth within the ninety-hour time window, the return trip would need to be shortened by nine hours.

The trajectory of Apollo 13’s loop behind the moon had carried them further away from earth than any other humans have ever gone.  Two hours after swinging around the moon, Lovell prepared to perform a second burn with the Lunar Module’s descent engine—five minutes in duration—to increase Apollo 13’s return speed and shorten the time it would take to get back home.  For navigational alignment during the burn maneuver, debris around the spacecraft made using the sextant to sight stars impossible.  Scientists on the ground came up with coordinates allowing Lovell to use the sun as a navigation reference instead.  The burn was a success.

Lithium hydroxide canisters remove the carbon dioxide gas, which is continuously produced by the respiration of the astronauts, from the atmosphere of a spacecraft.  The Lunar Module’s canisters were designed to protect two astronauts for two days.  Because it was being used as a “lifeboat”, Aquarius was hosting three astronauts for four days.  After one and a half days of use by three men, an alarm warned that the carbon dioxide levels in the Lunar Module were getting dangerously high.  Spare canisters from Odyssey could be used, but there was a problem—they were square, those used on Aquarius were round.

Engineers on the ground went to work using materials that would be available aboard the Apollo 13 spacecraft to improvise a solution.  They came up with an adapter design using duct tape, a plastic bag, and cardboard to fabricate a “mailbox” that would attach square lithium hydroxide canisters to the round air handling tubes in the Lunar Module.  After testing on the ground, the detailed verbal instructions for constructing the life-saving invention were radioed by Joe Kerwin from Mission Control to Aquarius.  Haise and Swigert assembled and installed two of the life-saving devices.  Carbon dioxide levels soon dropped back within acceptable parameters.

The makeshift adapters that were built to install square lithium hydroxide “scrubber” canisters on the round air supply tubes in Aquarius forever endeared duct tape to every Mr. Fixit on earth.  (NASA image)

The astronauts endured a lack of sleep, heat, water, and food during the trip home.  All were dehydrated and collectively they lost over thirty pounds of body weight.  As they approached earth, the crew prepared to implement the new  procedures for re-energizing the cold damp systems of the Command Module.  Ground personnel had drafted and tested this set of startup instructions in just three days instead of the thirty days that such work usually requires.  It was critical that the circuits that were energized did not collectively exceed the amperage available from the batteries on Odyssey.

Jack Swigert carefully brought Odyssey back to life using the new procedures, which were radioed, step by step, from Mission Control.  Short circuits, feared due to the moisture that had condensed on all the cold surfaces in the Command Module, were not a problem.  Improvements to the insulation on the wiring and electrical components throughout the interior of the space capsules following the Apollo 1 fire is believed to have safeguarded against any mishaps.

Four hours before reentry, at 8:15 A.M. E.S.T. on April 17, 1970, the Service Module was jettisoned and photographed as the crew got its first look at the damage caused by the explosion.  Just an hour before reentry, Lovell and Haise joined Swigert in the Command Module.  At 11:43, the Lunar Module was jettisoned and drifted away.

The Lunar Module Aquarius after release from the Command Module capsule Odyssey.  Aquarius later reentered earth’s atmosphere and was mostly destroyed.  The large pieces that survived descent splashed down at sea and sank.  (NASA image)

Apollo 13 reentered earth’s atmosphere and experienced the usual communications blackout as the capsule sizzled through an envelope of ionized air.  Mission Control and the world rejoiced as cameras televised images of deployed parachutes and a splashdown in the Pacific Ocean less than four miles from the recovery ship, the U.S.S. Iwo Jima, at 1:08 P.M. E.S.T.  Possibly as many as one billion people were watching.

The crew of Apollo 13, (left to right) Haise, Lovell, and Swigert, on the deck of the U.S.S. Iwo Jima less than an hour after splashdown.  (NASA image)
Flight Director Gene Kranz and Mission Control celebrate the safe return of Apollo 13.  (NASA image)

The families of the astronauts had traveled aboard Air Force One along with President Richard Nixon to Honolulu, Hawaii, and were waiting for the Apollo 13 crew when they arrived there from American Samoa on April 18.  Nixon presented the men with the Presidential Medal of Freedom.

(NASA image)

“…The men of Apollo 13, by their poise and skill under the most intense kind of pressure, epitomize the character that accepts danger and surmounts it…Theirs is the spirit that built America.” 

Among the greatest legacies of the earth orbit and moon missions were the scientific and technological achievements that allowed people to live and travel in space using a minimum of resources.  Apollo 13 took these minimums to the extreme—using everything as effectively and efficiently as possible.  It was one of the pinnacle achievements of the manned spaceflight program.

Fifty years later, are we embracing these and more recent innovations to live comfortably but wisely?

President John F. Kennedy, in his 1962 speech at Rice University, beckoned Americans to strive for a seemingly unreachable goal.  A goal that would motivate a people to determine their own destiny and not have destiny determined for them.

(White House image by Robert Knudsen)

“…We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone…”

Kennedy urged his country to take the risk and go to the moon.  Despite the dangers, despite the hesitations of the medical community, and in spite of the naysayers, they accepted the challenge and succeeded.

Have Americans lost the will to shape their own destiny?  Are they content with blind obedience, mediocrity, and shopping with a dirty rag over their face?  Let your friendly editor give you a hint.  The people who happen to be front and center in the news today, fifty years after Apollo 13, aren’t rocket scientists.  In fact, they have a hard time swallowing anything science has to offer, unless, of course, it can be twisted to back up their sneaky little schemes.  But they’re the leadership—elected dimwits and entrenched bureaucrats—and they rule by consent of the governed.  So the matter is decided.  Look at the bright side though, at least the creeps have a career to protect, so we’ll always be certain of their motivation.

SOURCES

Lovell, James A.  1975.  “Houston, We’ve Had A Problem;  A Crippled Bird Limps Safely Home”.  Apollo Expeditions to the Moon.  National Aeronautics and Space Administration.  Washington, DC.  pp. 247-263.

SOURCES THAT APPARENTLY NOBODY READS

Broseau, Lisa M., and Margaret Seitsema.  2020.  “Commentary: Masks-for-all for COVID-19 Not Based on Sound Data”.  University of Minnesota Center for Infectious Disease Policy https://www.cidrap.umn.edu/news-perspective/2020/04/commentary-masks-all-covid-19-not-based-sound-data  Accessed April 10, 2020.

Davies, Anna, Katy-Anne Thompson, Karthika Giri, George Kafatos, Jimmy Walker, and Alan Bennett.  2013.  “Testing the Efficacy of Homemade Masks: Would They Protect in an Influenza Pandemic?”.  Disaster Medicine and Public Health Preparedness.  7:4.  pp. 413-418.

MacIntyre, C. Raina, Holly Seale, Tham Chi Dung, Nguyen Tran Hien, Phan Thi Nga, Abrar Ahmad Chughtai, Bayzidur Rahman, Dominic E. Dwyer, and Quanyi Wang.  2015.  A Cluster Randomized Trial of Cloth Masks Compared with Medical Masks in Healthcare Workers.  BMJ Open.  5:e006577.  doi:10.1136/bmjopen-2014-006577.

A Coronal Mass Ejection

As spring begins, our thoughts often turn, if only briefly, to the sun and the welcome effect its higher angle in the sky and the lengthening hours of daylight will have on our winter-weary lives.  Soon, spring thunderstorms and warm humid air will make our crops thrive.  Plant buds will open to reveal flowers and leaves, and wildlife will hurry to raise a new generation.  We’re reminded that the sun is the source of earth’s life—and is its ongoing benefactor.

The rotation period of the sun’s outer layers, the convective zone and the visible photosphere, chromosphere, and corona, is approximately 25 earth days at the equator and as long as 36 days at the poles.  Closer to the core, the rotation period in the radiative zone is about 27 days.  Note the coronal streamers, filaments of plasma extending into space around the sun.  (Image courtesy of Large Angle Spectrometric Coronagraph Experiment/Naval Research Laboratory Solar and Heliospheric Observatory Team)

Coincidentally, there was, during the first full day of spring, an explosion of plasma from the sun—a Coronal Mass Ejection.  It happened to occur on the side of the sun currently facing away from earth, so the enormous cloud of magnetic energy won’t be affecting radio communications or electric transmission here.

Friday’s Coronal Mass Ejection can be seen in the following series of images.  To protect the camera’s sensor, the direct light of the sun was blocked by an occulter at the center of each picture.  The location of the sun’s disk is indicated by the white circle.  In this set, the ejected plasma appears as a cloud emerging from behind the left side of the shield and racing millions of miles into space.  The speed of a plasma cloud produced by a Coronal Mass Ejection varies.  When directed at earth, some can reach our planet in less than a day—others may take several days to arrive.

 

(Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph Experiment images)

Currently though, the term “Coronal Mass Ejection” may cause one to bristle and think of concerns other than the cosmos—Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the Wuhan flu chief among them.

A Coronal Mass Ejection?  (Centers for Disease Control image)

Well, perhaps the promise of warming weather and humid days will help assuage our anxieties.

Colds and flu are certainly more prevalent in winter than during the other seasons of the year.  Cases of these diseases begin creeping through schools and workplaces just in time for the year-end holidays.  They persist into early spring each year.  Then, as we spend more time outdoors in the sunshine and fresh air of April and May, their incidence wanes.  Soon the sneezing and coughing is mostly pollen-related and less often the result of transmitted viruses.

In addition to our liberation from buildings crowded with people, spring heat introduces another factor that is apparently responsible for subduing the rapid transmission of viruses—humidity.  February and March are typically the driest months of the year in the lower Susquehanna valley.  The air outside is cold and dry.  The air inside a heated building can be worse.

Researchers have found that viruses in aerosols produced by coughing, sneezing, breathing, and talking survive longer in drier air than in humid air.  A NIOSH and CDC funded study (Noti, et al., 2013) mechanically “coughed” aerosols containing H1N1 virus into a simulated examination room.  They discovered that “…one hour after coughing, ∼5 times more virus remains infectious at 7-23% RH (relative humidity) than at ≥43% RH.”  This is a significant discovery and may shed light on why the end of heating season and the arrival of warmer humid springtime air coincides with the end of cold and flu season.  The study’s analysis determined that “Total virus collected for 60 minutes retained 70.6-77.3% infectivity at relative humidity ≤23%, but only 14.6-22.2% at relative humidity ≥43%.”  Specifically, they found that the greatest effect of higher relative humidity occurs during the first fifteen minutes after the cough, and that virus in droplets exceeding 4μM in diameter had the most significant reduction in that time—ninety percent.

It looks like a little global warming wouldn’t hurt right now.

So remember, respect the sun—fear asteroids.

SOURCES

Burnham, Robert, Alan Dyer, Robert A. Garfinkle, Martin George, Jeff Kanipe, and David H. Levy.  2006.  The Nature Companions Practical Skywatching.  Fog City Press.  San Francisco, CA.

Noti, J.D., F. M. Blachere, C. M. McMillen, W. G. Lindsley, M. L. Kashon, D. R. Slaughter, et al.  2013.  “High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs”.  PLoS ONE.  8:2  e57485.  https://doi.org/10.1371/journal.pone.0057485

How I Spent My Summer Vacation

It’s a hot summer weekend with a sun so bright that creosote is dripping from utility poles onto the sidewalks.  Dodging these sticky little puddles of tar can cause one to reminisce about sultry days-gone-by.

Sometime in July or August each year, about half a century ago, we would cram all the gear for seven days of living into the car and head for the beaches of Delmarva or New Jersey.  It was family vacation time, that one week a year when the working class fantasizes that they don’t have it so bad during the other fifty-one weeks of the year.

The trip to the coast from the Susquehanna valley was a day-long journey.  Back then, four-lane highways were few beyond the cities of the northeast corridor and traffic jams stretched for miles.  Cars frequently overheated and steam rolled from beneath the hoods of those stopped to cool down.  There were even 55-gallon drums of non-potable water positioned at known choke points along some of the state roads so that motorists could top off their radiators and proceed on.  Within these back-ups there were many Volkswagen Beetles pausing along the side of the road with the rear hood propped up.  Their air-cooled engines would overheat on a hot day if the car wasn’t kept moving.  But, despite the setbacks, all were motivated to continue.  In time, with perseverance, the smell of saltmarsh air was soon rolling in the windows.  Our destination was near.

At the shore, priority one was to spend plenty of time at the beach.  Sunbathers lathered up with various concoctions of oils and moisturizers, including my personal favorite, cocoa butter, then they broiled themselves in the raging rays of the fusion-reaction furnace located just eight light-minutes away.  Reflected from the white sand and ocean surf, the flaming orb’s blinding light did a thorough job of cooking all the thousands of oil-basted sun worshippers packing the tidal zone for miles and miles.  You could smell the hot cocoa butter in the summer air as they burned.  Well, maybe not, but you could smell something there.

By now, you’re probably saying, “Hey, why weren’t you idiots wearing protection from the sun’s harmful U.V. rays?”

Good question.  Uncle Tyler Dyer reminds me that back in the sixties, a sunscreen was a shade hung to cover a window.  He continued, “Man, the only sun block we had was a beach ball that happened to pass between us and the sun.”

A beach ball doesn’t cast much of a shadow.  (NASA Solar Dynamics Observatory base image)

During several of our summertime beach visits in the early 1970s, we got a different sort of oil treatment—tar balls.  We never noticed the things until we got out of the water.  Playing around at the tide line and taking a tumble in the surf from time to time, we must have picked them up when we rolled in the sand.

Uncle Ty wasn’t happy, “Man, they’re sticking all over our legs and feet, and look at your swim trunks, they’re ruined.  And look in the sand, they’re everywhere.”  The event was one of the seeds that would in time grow into Uncle Ty’s fundamental distrust of corporate culture.

Looking around, tar balls were all over everyone who happened to be near the water.  Rumor on the beach was that they came from ships that passed by offshore earlier in the day.  The probable source was the many oil spills that had occurred in the Mid-Atlantic region in those years.  During the first six months of 1973 alone, there were over 800 oil spills there.  Three hundred of those spills occurred in the waters surrounding New York City.  The largest, almost half a million gallons, occurred in New York Harbor when a cargo ship collided with the tanker “Esso Brussels”.  Forty percent of that spill burned in the fire that followed the mishap, the remainder entered the environment.

When it was time to clean up, we slowly removed the tar from our legs and feet by rubbing it away with a rag soaked in charcoal lighter fluid or gasoline.  Needless to say, our skin turned redder than it had already been from sunburn.

Letting swimmers and wildlife roll around in the sand is no longer the preferred method of cleaning up tar balls from man-made oil spills.  Here, President Obama examines tar balls resulting from the April 20, 2010, B.P. Deepwater Horizon spill in the Gulf of Mexico.  An organized cleanup effort followed this May 28, 2010, visit to the polluted Port Fourchon beach in Louisiana.

After a full day in the surf, we’d be on our way back to our “home base” for summer vacation, a campground nestled somewhere in the pines on the mainland side of the tidal marshes behind our beach’s barrier island.  There, we’d shake the sand out of our trunks and savor the feeling of dry clothing.  As the sun set, the smoke, flicker, and crackle of dozens of campfires filled the spaces between the tents and camping trailers.  Colored lights strung around awnings dazzled sun-weary eyes as night descended across the landscape.  We’d commence the process of incinerating some marshmallows soon after.  Then, sometime while we were roasting our weenies and warming our buns, we’d hear it.

His device didn’t have a very good muffler.  It sounded like a rusty old lawn mower running on the back of a rusty old truck that didn’t sound much better.  And you could see the cloud rising above the campsites around the corner as he approached.  It was the mosquito man, come to rid the place of pesky nocturnal biting insects.  Behind him, always, were young boys on bicycles riding in and out of the fog of insecticide that rolled from the back of the truck.

Curious children seen following the mosquito man in a 1947 Universal Newsreel.

One was wise to quickly eat your campfire food and put the rest away before the fog rolled in.  You had just minutes to choke down that burned up hot dog.  Then the sense of urgency was gone.  Everyone just sat around at picnic tables and on lawn chairs bathing in the airborne cloud.  A thin layer of insecticide rubbed into the skin along with the liberal doses of Noxzema being applied to soothe sunburn pain will get you through the night just fine.

By the early 1970s, fogging of campgrounds to eliminate nuisance mosquitos was conducted using primarily the insecticide carbaryl (Sevin).  Prior to that, in the years following World War II, DDT was the one-trick pony for killing everything everywhere.  In 1947, the youth of San Antonio, Texas were subjected to repetitive direct spraying with DDT to eliminate the “germs” responsible for poliomyelitis.  It was a misguided use of the pesticide.  (Universal Newsreel image)
Don’t you kids know that there’s sodium nitrite and saturated fat in those luncheon meats you’re eating?  And the bread, aren’t you concerned about all that gluten?  Oh, and by the way, they’re spraying you down with DDT again.  It really happened in 1947 in San Antonio, Texas.  (Universal Newsreel image)

Perhaps the most memorable event to occur during our summer vacations happened at the moment of this writing, fifty years ago.

We were vacationing in a campground in southern New Jersey.  Our family and the family of my dad’s co-worker gathered in a mosquito-mesh tent surrounding a small black-and-white television.  An extension cord was strung to a receptacle on a nearby post, and the cathode ray tube produced the familiar picture of glowing blue tones to illuminate the otherwise dark scene.  There was constant experimentation with the whip antenna to try to get a visible signal.  There were no local UHF broadcasters and the closest VHF television stations were in Philadelphia, so the picture constantly had “snow” diminishing its already poor clarity.  But we could see it, and I’ll never forget it.

Neil Armstrong steps off the landing gear pad to be the first human to walk on the moon.  July 20, 1969, 10:56 P.M. E.D.T.  (NASA image)
Armstrong left the field of view of the LEM-mounted camera for minutes at a time as he completed various tasks.  TV viewers heard audio of his conversations with partner Edwin “Buzz” Aldrin and Houston Mission Control during these interludes.  It was definitely not coverage designed for the short attention span of typical TV audiences.  (NASA image)
Edwin “Buzz” Aldrin descends the ladder on the LEM’s landing gear to reach the moon’s surface 19 minutes after Armstrong.  (NASA image)
Because NASA used a different video format than broadcast television, images seen at the time of the moon walk were of poor quality, produced by aiming a TV camera at a NASA monitor.  Quality still images, including this one of Edwin “Buzz” Aldrin descending to the lunar surface, were available only after the astronauts returned exposed film to earth for processing.  (NASA image by Neil Armstrong)
Edwin “Buzz” Aldrin overlooking the LEM “Eagle” at Tranquility Base.  (NASA image by Neil Armstrong)
Neil Armstrong took this iconic image of Edwin “Buzz” Aldrin using a Hasselblad camera.  His reflection can be seen in Aldrin’s visor.  (NASA image by Neil Armstrong)
Neil Armstrong (1930-2012), first man on the moon.  (NASA image)

 

  SOURCES

Andelman, David A.  “Oil Spills Here Total 300 in ’73”.  The New York Times.  August 8, 1973.  p.41.

Cortright, Edgar M. (Editor).  1975.  Apollo Expeditions to the Moon.  National Aeronautics and Space Administration.  Washington, DC.

 

 

Our Oasis

Fifty years ago, the crew of Apollo 8 became the first humans to leave Earth and journey to its closest celestial body, the Moon.  Launching on the morning of December 21, 1968, they were the first to enter space from atop the powerful and complex Saturn V rocket.  Their eyes would be the first to see the Earth as an entire sphere and to orbit the Moon and observe its obscure far side.  For many back home, they changed not only the way we understand the Moon, but how we perceive the uniqueness and fragility of Earth.

On December 23, 1968, the crew of Apollo 8 transmitted this black-and-white television image of Earth to an awe-struck global audience back home. Astronauts Frank Borman, Jim Lovell, and Bill Anders were the first of only 24 persons to date who have observed, with their own eyes, the entire disk of the planet, seen here from 176,533 miles during their outbound journey to orbit the Moon. (NASA Image)
Striking color photographs were processed and distributed following the return of Apollo 8’s crew from their successful Christmas Eve orbits of the Moon. Exposed while outbound on December 22, 1968, this spectacular image includes the Americas, the Atlantic Ocean, and western Africa. Taken within a day of the Northern Hemisphere’s Winter Solstice, the photograph clearly shows the shadow of darkness draped across the Arctic region. (Science & Analysis Laboratory, Johnson Space Center, NASA Image) 
Photographed by astronaut Bill Anders, the well-known “Earthrise” image reveals our blue world as seen from the Apollo 8 Command Module which at the time was emerging from the opposite side of the moon during one of its Christmas Eve lunar orbits. (NASA Image)

Said Command Module Pilot Jim Lovell during a televised broadcast from lunar orbit on Christmas Eve half a century ago, “The vast loneliness up here of the Moon is awe-inspiring, and it makes you realize just what you have back there on Earth.  The Earth from here is a grand oasis in the big vastness of space.”

A Little Black Spot on the Sun Today

Was there a better place to have a look at the dark side of the moon easing across the summer sun than from the Pothole Rocks at Conewago Falls?  O.K., alright, so there must have been a venue or two with bigger crowds, grand emotions, prepared foods, and near darkness, but the pseudolunar landscape of the falls seemed like an ideal observation point for the great North American solar eclipse of 2017.

The craters of the moon right here on earth, the Pothole Rocks of Conewago Falls.

Being the only person on the entire falls had its advantages, not the least of which was the luxury of pointing the camera directly at the sun and clicking off a few shots without getting funny looks and scolding comments.  Priceless solitude.

Point that camera right at that eclipse for a nice little photograph of the big event.

If you think it looks like the above photograph was taken in a house of mirrors, then you’re pretty sharp.  You’ve got it figured out.  After getting a bad case of welder’s burns on the first day of a job at a metal fabricating shop during my teen years, I learned the value of a four dollar piece of glass.

A number 12 welder’s lens in action while viewing and photographing today’s solar eclipse.

The eclipse at 2:19 P.M. Eastern Daylight Time (18:19 U.T.C), nearly as good as it was going to get at Conewago Falls.  The lunar disc would continue to the left, leaving the top fifth of the sun “uneclipsed”.

For those of you who prefer not to look at the sun, even with protection (I heard those S.P.F. 30 sunblock eye drops were a fraud…I hope you didn’t buy any.), here is the indirect viewing method as it happened today.

The eclipse is projected into the bottom of a cavernous hole in a Pothole Rock. (Three or four people can sit inside this hole.)  The tube, lenses, and mirrors of one side of a pair of binoculars were used to focus the thin sliver of sunlight onto the diabase stone “floor”.  The optics have inverted the image.

If you were to our south in the path of totality for this eclipse, you probably noted reactions by flora and fauna.  Here, there was really not much to report.  The leaves of Partridge Pea didn’t fold for the night, birds didn’t fly away to roost, and the chorus of evening and nighttime singing insects didn’t get cranked up.  The only sensation was the reduced brightness of the sun, as if a really dark cloud was filtering the light without changing its color or eliminating shadows.  And that was the great solar eclipse of 2017.