Monarch an Endangered Species: What You Can Do Right Now

This month, the International Union for Conservation of Nature (I.U.C.N.) added the Migratory Monarch Butterfly (Danaus plexippus plexippus) to its “Red List of Threatened Species”, classifying it as endangered.  Perhaps there is no better time than the present to have a look at the virtues of replacing areas of mowed and manicured grass with a wildflower garden or meadow that provides essential breeding and feeding habitat for Monarchs and hundreds of other species of animals.

Monarch on Common Milkweed Flower Cluster
A recently arrived Monarch visits a cluster of fragrant Common Milkweed flowers in the garden at the susquehannawildlife.net headquarters.  Milkweeds included among a wide variety of plants in a garden or meadow habitat can help local populations of Monarchs increase their numbers before the autumn flights to wintering grounds commence in the fall.  Female Monarchs lay their eggs on milkweed leaves, then, after hatching, the larvae (caterpillars) feed on them before pupating.

If you’re not quite sure about finally breaking the ties that bind you to the cult of lawn manicuring, then compare the attributes of a parcel maintained as mowed grass with those of a space planted as a wildflower garden or meadow.  In our example we’ve mixed native warm season grasses with the wildflowers and thrown in a couple of Eastern Red Cedars to create a more authentic early successional habitat.

Comparison of Mowed Grass to Wildflower Meadow
* Particularly when native warm-season grasses are included (root depth 6′-8′)

Still not ready to take the leap.  Think about this: once established, the wildflower planting can be maintained without the use of herbicides or insecticides.  There’ll be no pesticide residues leaching into the soil or running off during downpours.  Yes friends, it doesn’t matter whether you’re using a private well or a community system, a wildflower meadow is an asset to your water supply.  Not only is it free of man-made chemicals, but it also provides stormwater retention to recharge the aquifer by holding precipitation on site and guiding it into the ground.  Mowed grass on the other hand, particularly when situated on steep slopes or when the ground is frozen or dry, does little to stop or slow the sheet runoff that floods and pollutes streams during heavy rains.

What if I told you that for less than fifty bucks, you could start a wildflower garden covering 1,000 square feet of space?  That’s a nice plot 25′ x 40′ or a strip 10′ wide and 100′ long along a driveway, field margin, roadside, property line, swale, or stream.  All you need to do is cast seed evenly across bare soil in a sunny location and you’ll soon have a spectacular wildflower garden.  Here at the susquehannawildllife.net headquarters we don’t have that much space, so we just cast the seed along the margins of the driveway and around established trees and shrubs.  Look what we get for pennies a plant…

Wildflower Garden
Some of the wildflowers and warm-season grasses grown from scattered seed in the susquehannawildlife.net headquarters garden.

Here’s a closer look…

Lance-leaved Coreopsis
Lance-leaved Coreopsis (Coreopsis lanceolata), a perennial.
Black-eyed Susan
Black-eyed Susan, a biennial or short-lived perennial.
Black-eyed Susan "Gloriosa Daisy"
“Gloriosa Daisy”, a variety of Black-eyed Susan, a biennial or short-lived perennial.
Purple Coneflower
Purple Coneflower, an excellent perennial for pollinators.  The ripe seeds provide food for American Goldfinches.
Common Sunflower
A short variety of Common Sunflower, an annual and a source of free bird seed.
Common Sunflower
Another short variety of Common Sunflower, an annual.

All this and best of all, we never need to mow.

Around the garden, we’ve used a northeast wildflower mix from American Meadows.  It’s a blend of annuals and perennials that’s easy to grow.  On their website, you’ll find seeds for individual species as well as mixes and instructions for planting and maintaining your wildflower garden.  They even have a mix specifically formulated for hummingbirds and butterflies.

Annuals in bloom
When planted in spring and early summer, annuals included in a wildflower mix will provide vibrant color during the first year.  Many varieties will self-seed to supplement the display provided by biennials and perennials in subsequent years.
Wildflower Seed Mix
A northeast wildflower mix from American Meadows.  There are no fillers.  One pound of pure live seed easily plants 1,000 square feet.

Nothing does more to promote the spread and abundance of non-native plants, including invasive species, than repetitive mowing.  One of the big advantages of planting a wildflower garden or meadow is the opportunity to promote the growth of a community of diverse native plants on your property.  A single mowing is done only during the dormant season to reseed annuals and to maintain the meadow in an early successional stage—preventing reversion to forest.

For wildflower mixes containing native species, including ecotypes from locations in and near the Lower Susquehanna River Watershed, nobody beats Ernst Conservation Seeds of Meadville, Pennsylvania.  Their selection of grass and wildflower seed mixes could keep you planting new projects for a lifetime.  They craft blends for specific regions, states, physiographic provinces, habitats, soils, and uses.  Check out these examples of some of the scores of mixes offered at Ernst Conservation Seeds

      • Pipeline Mixes
      • Pasture, Grazing, and Hay Mixes
      • Cover Crops
      • Pondside Mixes
      • Warm-season Grass Mixes
      • Retention Basin Mixes
      • Wildlife Mixes
      • Pollinator Mixes
      • Wetland Mixes
      • Floodplain and Riparian Buffer Mixes
      • Rain Garden Mixes
      • Steep Slope Mixes
      • Solar Farm Mixes
      • Strip Mine Reclamation Mixes

We’ve used their “Showy Northeast Native Wildflower and Grass Mix” on streambank renewal projects with great success.  For Monarchs, we really recommend the “Butterfly and Hummingbird Garden Mix”.  It includes many of the species pictured above plus “Fort Indiantown Gap” Little Bluestem, a warm-season grass native to Lebanon County, Pennsylvania, and milkweeds (Asclepias), which are not included in their northeast native wildflower blends.  More than a dozen of the flowers and grasses currently included in this mix are derived from Pennsylvania ecotypes, so you can expect them to thrive in the Lower Susquehanna River Watershed.

Swamp Milkweed
Swamp Milkweed, a perennial species, is included in the Ernst Seed “Butterfly and Hummingbird Garden Mix”.  It is a favorite of female Monarchs seeking a location to deposit eggs.
Monarch Caterpillar feeding on Swamp Milkweed
A Monarch larva (caterpillar) feeding on Swamp Milkweed.
Butterfly Weed
Butterfly Weed (Asclepias tuberosa) is included in the Ernst Seed “Butterfly and Hummingbird Garden Mix”.  This perennial is also known as Butterfly Milkweed.
Tiger Swallowtails visiting Butterfly Weed
Eastern Tiger Swallowtails are among the dozens of species of pollinators that will visit Butterfly Weed.

In addition to the milkweeds, you’ll find these attractive plants included in Ernst Conservation Seed’s “Butterfly and Hummingbird Garden Mix”, as well as in some of their other blends.

Wild Bergamot
The perennial Wild Bergamot, also known as Bee Balm, is an excellent pollinator plant, and the tubular flowers are a favorite of hummingbirds.
Oxeye
Oxeye is adorned with showy clusters of sunflower-like blooms in mid-summer.  It is a perennial plant.
Plains Coreopsis
Plains Coreopsis (Coreopsis tinctoria), also known as Plains Tickseed, is a versatile annual that can survive occasional flooding as well as drought.
Gray-headed Coneflower
Gray-headed Coneflower (Ratibida pinnata), a tall perennial, is spectacular during its long flowering season.
Monarch on goldenrod.
Goldenrods are a favorite nectar plant for migrating Monarchs in autumn.  They seldom need to be sown into a wildflower garden; the seeds of local species usually arrive on the wind.  They are included in the “Butterfly and Hummingbird Garden Mix” from Ernst Conservation Seeds in low dose, just in case the wind doesn’t bring anything your way.
Partridge Pea
Is something missing from your seed mix?  You can purchase individual species from the selections available at American Meadows and Ernst Conservation Seeds.  Partridge Pea is a good native annual to add.  It is a host plant for the Cloudless Sulphur butterfly and hummingbirds will often visit the flowers.  It does really well in sandy soils.
Indiangrass in flower.
Indiangrass is a warm-season species that makes a great addition to any wildflower meadow mix.  Its deep roots make it resistant to drought and ideal for preventing erosion.

Why not give the Monarchs and other wildlife living around you a little help?  Plant a wildflower garden or meadow.  It’s so easy, a child can do it.

Planting a riparian buffer with wildflowers and warm-season grasses
Volunteers sow a riparian buffer on a recontoured stream bank using wildflower and warm-season grass seed blended uniformly with sand.  By casting the sand/seed mixture evenly over the planting site, participants can visually assure that seed has been distributed according to the space calculations.
Riparian Buffer of wildflowers
The same seeded site less than four months later.
Monarch Pupa
A Monarch pupa from which the adult butterfly will emerge.

Put Up the White Flag

It was a routine occurrence in many communities along tributaries of the lower Susquehanna River during the most recent two months.  The rain falls like it’s never going to stop—inches an hour.  Soon there is flash flooding along creeks and streams.  Roads are quickly inundated.  Inevitably, there are motorists caught in the rising waters and emergency crews are summoned to retrieve the victims.  When the action settles, sets of saw horses are brought to the scene to barricade the road until waters recede.  At certain flood-prone locations, these events are repeated time and again.  The police, fire, and Emergency Medical Services crews seem to visit them during every torrential storm—rain, rescue, rinse, and repeat.

We treat our local streams and creeks like open sewers.  Think about it.  We don’t want rainwater accumulating on our properties.  We pipe it away and grade the field, lawn, and pavement to roll it into the neighbor’s lot or into the street—or directly into the waterway.  It drops upon us as pure water and we instantly pollute it.  It’s a method of diluting all the junk we’ve spread out in its path since the last time it rained.  A thunderstorm is the big flush.  We don’t seem too concerned about the litter, fertilizer, pesticides, motor fluids, and other consumer waste it takes along with it.  Out of sight, out of mind.

Failure to retain and infiltrate stormwater to recharge aquifers can later result in well failures and reduced base flow in streams.  (Conoy Creek’s dry streambed in June, 2007)

Perhaps our lack of respect for streams and creeks is the source of our complete ignorance of the function of floodplains.

Floodplains are formed over time as hydraulic forces erode bedrock and soils surrounding a stream to create adequate space to pass flood waters.  As floodplains mature they become large enough to reduce flood water velocity and erosion energy.  They then function to retain, infiltrate, and evaporate the surplus water from flood events.  Microorganisms, plants, and other life forms found in floodplain wetlands, forests, and grasslands purify the water and break down naturally-occurring organic matter.  Floodplains are the shock-absorber between us and our waterways.  And they’re our largest water treatment facilities.

Why is it then, that whenever a floodplain floods, we seem motivated to do something to fix this error of nature?  Man can’t help himself.  He has a compulsion to fill the floodplain with any contrivance he can come up with.  We dump, pile, fill, pave, pour, form, and build, then build some more.  At some point, someone notices a stream in the midst of our new creation.  Now it’s polluted and whenever it storms, the darn thing floods into our stuff—worse than ever before.  So the project is crowned by another round of dumping, forming, pouring, and building to channelize the stream.  Done!  Now let’s move all our stuff into our new habitable space.

Natural Floodplain- Over a period of hundreds or thousands of years, the stream (dark blue) has established a natural floodplain including wetlands and forest.  In this example, buildings and infrastructure are located outside the zone inundated by high water (light blue) allowing the floodplain to function as an effective water-absorbing buffer.
Impaired Floodplain- Here the natural floodplain has been filled for building (left) and paved for recreation area parking (right).  The stream has been channelized.  Flood water (light blue) displaced by these alterations is likely to inundate areas not previously impacted by similar events.  Additionally, the interference with natural flow will create new erosion points that could seriously damage older infrastructure and properties.

The majority of the towns in the lower Susquehanna valley with streams passing through them have impaired floodplains.  In many, the older sections of the town are built on filled floodplain.  Some new subdivisions highlight streamside lawns as a sales feature—plenty of room for stockpiling your accoutrements of suburban life.  And yes, some new homes are still being built in floodplains.

When high water comes, it drags tons of debris with it.  The limbs, leaves, twigs, and trees are broken down by natural processes over time.  Nature has mechanisms to quickly cope with these organics.  Man’s consumer rubbish is another matter.  As the plant material decays, the embedded man-made items, particularly metals, treated lumber, plastics, Styrofoam, and glass, become more evident as an ever-accumulating “garbage soil” in the natural floodplains downstream of these impaired areas.  With each storm, some of this mess floats away again to move ever closer to Chesapeake Bay and the Atlantic.  Are you following me?  That’s our junk from the curb, lawn, highway, or parking lot bobbing around in the world’s oceans.

A shed, mobile home, or house can be inundated or swept away during a flood.  Everything inside (household chemicals, gasoline, fuel oil, pesticides, insulation, all those plastics, etc.) instantly pollutes the water.  Many communities that rely on the Susquehanna River for drinking water are immediately impacted, including Lancaster, PA and Baltimore, MD.  This dumpster was swept away from a parking lot in a floodplain.  It rolled in the current, chipping away at the bridge before spilling the rubbish into the muddy water.  After the flood receded, the dumpster was found a mile downstream.  Its contents are still out there somewhere.
Floodplains along the lower Susquehanna River are blanketed with a layer of flotsam that settles in place as high water recedes.  These fresh piles can be several feet deep and stretch for miles.  Nature decomposes the organic twigs and driftwood to build soil-enriching humus.  However, the plastics and other man-made materials that do not readily decay or do not float away toward the sea during the next flood are incorporated into the alluvium and humus creating a “garbage soil”.  Over time, the action of abrasives in the soil will grind small particles of plastics from the larger pieces.  These tiny plastics can become suspended in the water column each time the river floods.  What will be the long-term impact of this type of pollution?
Anything can be swept away by the powerful hydraulic forces of flowing water.  Large objects like this utility trailer can block passages through bridges and escalate flooding problems.
The cost of removing debris often falls upon local government and is shared by taxpayers.
Here, a junked boat dock is snagged on the crest of the York Haven Dam at Conewago Falls.  Rising water eventually carried it over the dam and into the falls where it broke up.  This and tons of other junk are often removed downstream at the Safe Harbor Dam to prevent damage to turbine equipment.  During periods of high water, the utility hauls debris by the truck-load to the local waste authority for disposal.  For the owners of garbage like this dock, it’s gone and it’s somebody else’s problem now.
Motor vehicles found after floating away from parking areas in floodplains can create a dangerous dilemma for police, fire, and E.M.S. personnel, particularly when no one witnesses the event.  Was someone driving this car or was it vacant when it was swept downstream?  Should crews be put at risk to locate possible victims?

Beginning in 1968, participating municipalities, in exchange for having coverage provided to their qualified residents under the National Flood Insurance Program, were required to adopt and enforce a floodplain management ordinance.  The program was intended to reduce flood damage and provide flood assistance funded with premiums paid by potential victims.  The program now operates with a debt incurred during severe hurricanes.  Occurrences of repetitive damage claims and accusations that the program provides an incentive for rebuilding in floodplains have made the National Flood Insurance Program controversial.

In the Lower Susquehanna River Watershed there are municipalities that still permit new construction in floodplains.  Others are quite proactive at eliminating new construction in flood-prone zones, and some are working to have buildings removed that are subjected to repeated flooding.

Another Wall— Here’s an example of greed by the owner, engineer, and municipality… placing their financial interests first.  The entire floodplain on the north side of this stream was filled, then the wall was erected to contain the material.  A financial institution’s office and parking lot was constructed atop the mound.  This project has channelized the stream and completely displaced half of the floodplain to a height of 15 to 20 feet.  Constructed less than five years ago, the wall failed already and has just been totally reconstructed.  The photo reveals how recent flooding has begun a new erosion regime where energy is focused along the base of the wall.  Impairment of a floodplain to this degree can lead to flooding upstream of the site and erosion damage to neighboring infrastructure including roads and bridges.
The floodplain along this segment of the lower Swatara Creek in Londonderry Township, Dauphin County is free to flood.  Ordinances prohibit new construction here and 14 older houses that repeatedly flooded were purchased, dismantled, and removed using funding from the Federal Emergency Management Agency (F.E.M.A).  A riparian buffer was planted and some wetland restorations were incorporated into stormwater management installations along the local highways.  When the waters of the Swatara rise, the local municipality closes the roads into the floodplain.  Nobody lives or works there anymore, so no one has any reason to enter.  There’s no need to rescue stubborn residents who refused advice to evacuate.  Sightseers can park and stand on the hill behind the barricades and take all the photographs they like.
A new Pennsylvania Turnpike bridge across Swatara Creek features wide passage for the stream below.  Water flowing in the floodplain can pass under the bridge without being channelized toward the path where the stream normally flows in the center.  The black asterisk-shaped floats spin on the poles to help deflect debris away from the bridge piers.  (flood crest on July 26, 2018)
People are curious when a waterway floods and they want to see it for themselves.  Wouldn’t it be wise to anticipate this demand for access by being ready to accommodate these citizens safely?  Isn’t a parking lot, picnic area, or manicured park safer and more usable when overlooking the floodplain as opposed to being located in it?  Wouldn’t it be a more prudent long-term investment, both financially and ecologically, to develop these improvements on higher ground outside of flood zones?
Now would be a good time to stop the new construction and the rebuilding in floodplains.  Aren’t the risks posed to human life, water quality, essential infrastructure, private property, and ecosystems too great to continue?
Isn’t it time to put up the white flag and surrender the floodplains to the floods?  That’s why they’re there.  Floodplains are for flooding.

S’more

The tall seed-topped stems swaying in a summer breeze are a pleasant scene.  And the colorful autumn shades of blue, orange, purple, red, and, of course, green leaves on these clumping plants are nice.  But of the multitude of flowering plants, Big Bluestem, Freshwater Cordgrass, and Switchgrass aren’t much of a draw.  No self-respecting bloom addict is going out of their way to have a gander at any grass that hasn’t been subjugated and tamed by a hideous set of spinning steel blades.  Grass flowers…are you kidding?

Big Bluestem in flower in the Riverine Grasslands at Conewago Falls.

O.K., so you need something more.  Here’s more.

Meet the Partridge Pea (Chamaecrista fasciculata).  It’s an annual plant growing in the Riverine Grasslands at Conewago Falls as a companion to Big Bluestem.  It has a special niche growing in the sandy and, in summertime, dry soils left behind by earlier flooding and ice scour.  The divided leaves close upon contact and also at nightfall.  Bees and other pollinators are drawn to the abundance of butter-yellow blossoms.  Like the familiar pea of the vegetable garden, the flowers are followed by flat seed pods.

The Partridge Pea can tolerate dry sandy soils.

But wait, here’s more.

In addition to its abundance in Conewago Falls, the Halberd-leaved Rose Mallow (Hibiscus laevis) is the ubiquitous water’s edge plant along the free-flowing Susquehanna River for miles downstream.  It grows in large clumps, often defining the border between the emergent zone and shore-rooted plants.  It is particularly successful in accumulations of alluvium interspersed with heavier pebbles and stone into which the roots will anchor to endure flooding and scour.  Such substrate buildup around the falls, along mid-river islands, and along the shores of the low-lying Riparian Woodlands immediately below the falls are often quite hospitable to the species.

Halberd-leaved Rose Mallow is a durable inhabitant of the falls.  Regular flooding keeps competing species at bay.  A taproot helps to safeguard against dislocation, allowing plants to grow in places subjected to turbulent currents.
Halberd-leaved Rose Mallow in bloom.  The similarity to cultivated members of the Hibiscus genus can readily be seen.  It is one of the showiest of perennial wildflowers in the floodplain.  Note the lobed, halberd-shaped leaves, source of its former species name militaris.
The seeds of Halberd-leaved Rose Mallow are contained in bladders which can float to assist in their distribution.  Some of these bladders cling to the dead leafless stems in winter, making it an easy plant to identify in nearly any season.

A second native wildflower species in the genus Hibiscus is found in the Conewago Falls floodplain, this one in wetlands.  The Swamp Rose Mallow (H. moscheutos) is similar to Halberd-leaved Rose Mallow, but sports more variable and colorful blooms.  The leaves are toothed without the deep halberd-style lobes and, like the stems, are downy.  As the common name implies, it requires swampy habitat with ample water and sunlight.

Swamp Rose Mallow in a sunny wetland.  This variety with solid-colored flowers (without dark centers) and pale green leaves and stems was formerly known as a separate species of  Swamp Rose Mallow, H. palustris.  Note that the flowers are terminal on the stems.
A few scattered specimens of a more typical variety of Swamp Rose Mallow are found on the shoreline and in the Riverine Grasslands of Conewago Falls.  The blooms are bright pink with darker centers and the leaf stems are robust and reddish.  This one is seen growing among Halberd-leaved Rose Mallow, with which it shares the characteristic of having flower stems growing from some of the upper leaf axils.  A variety with red-centered white flowers is often found throughout the plant’s range.

In summary, we find Partridge Pea in the Riverine Grasslands growing in sandy deposits left by flood and ice scour.  We find Halberd-leaved Rose Mallow rooted at the border between shore and the emergent zone.  We find Swamp Rose Mallow as an emergent in the wetlands of the floodplain.  And finally, we find marshmallows in only one location in the area of Conewago Falls.  Bon ap’.

Here’s S’more

SOURCES

Newcomb, Lawrence.  1977.  Newcomb’s Wildflower Guide.  Little, Brown and Company.  Boston, Massachusetts.

The Wall

It was one of the very first of my memories.  From the lawn of our home I could look across the road and down the hill through a gap in the woodlands.  There I could see water, sometimes still with numerous boulders exposed, other times rushing, muddy, and roaring.  Behind these waters was a great stone wall and beyond that a wooded hillside.  I recall my dad asking me if I could see the dam down there.  I couldn’t see a dam, just fascinating water and the gray wall behind it.  I looked and searched but not a trace of a structure spanning the near to far shore was to be seen.  Finally, at some point, I answered in the affirmative to his query; I could see the dam…but I couldn’t.

We lived in a small house in the village of Falmouth along the Susquehanna River in the northwest corner of Lancaster County over fifty years ago.  A few years after we had left our riverside domicile and moved to a larger town, the little house was relocated to make way for an electric distribution sub-station and a second set of electric transmission wires in the gap in the woodlands.  The Brunner Island coal-fired electric generating station was being upgraded downstream and, just upstream, a new nuclear-powered generating station was being constructed on Three Mile Island.  To make way for the expanding energy grid, our former residence was trucked to a nearby boat landing where there were numerous other river shacks and cabins.  Because it was placed in the floodplain, the building was raised onto a set of wooden stilts to escape high water.  It didn’t help.  The recording-breaking floods of Hurricane Agnes in June of 1972 swept the house away.

The view through the cut in the woodland, a little wider than in the early 1960s with the addition of the newer electric transmission wire towers. The “Wall” is the same.

During the time we lived along the Susquehanna, the river experienced record-low flow rates, particularly in the autumn of 1963 and again in 1964.  My dad was a dedicated 8mm home-movie photographer.  Among his reels was film of buses parked haphazardly along the road (PA Route 441 today) near our home.  Sightseers were coming to explore the widely publicized dry riverbed and a curious moon-like landscape of cratered rocks and boulders.  It’s hard to fathom, but people did things like that during their weekends before football was invented.  Scores of visitors climbed through the rocks and truck-size boulders inspecting this peculiar scene.  My dad, his friends, and so many others with camera in hand were experiencing the amazing geological feature known as the Pothole Rocks of Conewago Falls.

Conewago Falls on the Susquehanna River and several exposed York Haven Diabase Pothole Rocks.  Lancaster (foreground) and Dauphin (center) Counties meet along a southwest to northeast borderline through the rapids.  Lands on the west shoreline in the background are in York County.  Three Mile Island is seen in the upper right.

The river here meets serious resistance as it pushes its way through the complex geology of south-central Pennsylvania.  These hard dark-gray rocks, York Haven Diabase, are igneous in origin.  Diabase sheets and sills intruded the Triassic sediments of the Gettysburg Formation here over 190 million years ago.  It may be difficult to visualize, but these sediments were eroded from surrounding mountains into the opening rift valley we call the Gettysburg Basin.  This rift and others in a line from Nova Scotia to Georgia formed as the supercontinent Pangaea began dividing into the continents we know today.  Eventually the Atlantic Ocean rift would dominate as the active dynamic force and open to separate Africa from North America.  The inactive Gettysburg Basin, filled with sediments and intruded by igneous diabase, would henceforth, like the mountainous highlands surrounding it, be subjected to millions of years of erosion.  Of the regional rocks, the formations of Triassic redbeds, sandstones, and particularly diabase in the Gettysburg Basin are among the more resistant to the forces of erosion.  Many less resistant older rocks, particularly those of surrounding mountains, are gone.  Today, the remains of the Gettysburg Basin’s rock formations stand as rolling highlands in the Piedmont Province.

Flooded from the heavy rains of Tropical Storm Lee, the sediment-laden Susquehanna River flows through the Gettysburg Basin just south of Harrisburg, PA, September 10, 2011.  The “Wall” as seen from space.  (NASA Earth Observatory Image)

The weekend visitors in 1963 and 1964 marveled at evidence of the river’s fight to break down the hard York Haven Diabase.   Scoured bedrock traced the water’s turbulent flow patterns through the topography of the falls.  Meltwater from the receding glaciers of the Pleistocene Ice Ages thousands to tens of thousands of years ago raged in high volume abrasive-loaded torrents to sculpt the Pothole Rocks into the forms we see today.  Our modern floodwaters with ice and fine suspended sediments continue to wear at the smooth rocks and boulders, yet few are broken or crumbled to be swept away.  It’s a very slow process.  The river elevation here drops approximately 19 feet in a quarter of a mile, a testament to the bedrock’s persisting resistance to erosion.  Conewago Falls stands as a natural anomaly on a predominantly uniform gradient along the lower Susquehanna’s downhill path from the Appalachian Mountains to the Chesapeake Bay.

The scene of dangerous tumbling rapids during high flows, the drought and low water of 1963 and 1964 had left the falls to resemble a placid scene; a moonscape during a time when people were obsessed with mankind’s effort to visit earth’s satellite.  Visitors saw the falls as few others had during the twentieth century.  Much of it was due to the presence of the wall.  I had to be a bit older than four years old to grasp it.  You see the wall and the dam are one and the same.  The wall is the York Haven Dam.

The initial segment, a crib dam constructed in 1885 by the York Haven Paper Company to supply water power to their mill, took advantage of the geomorphic features of the diabase bedrock of Conewago Falls to divert additional river flow into the abandoned Conewago Canal.  The former canal, opened in 1797 to allow passage around the rapids along the west shore, was being used as a headrace to channel water into the grinding mill’s turbines.  Strategic placement of this first wall directed as much water as possible toward the mill with the smallest dam practicable.  The York Haven Power Company incorporated the paper mill’s crib dam into the “run-of-the-river” dam built through the falls from the electric turbine powerhouse they constructed on the west shore to the southern portion of Three Mile Island more than a mile away.   The facility began electric generation in 1904.  The construction of the “Red Hill Dam” from the east shore of Three Mile Island to the river’s east shore made York Haven Dam a complete impoundment on the Susquehanna.  The pool, “Lake Frederic”, thus floods that portion of the Pothole Rocks of Conewago Falls located behind the dam.   On the downstream side, water spilling over or through the dam often inundates the rocks or renders them inaccessible.

During the droughts of the early 1960s, diversion of nearly all river flow to the York Haven Dam powerhouse cleared the way for weekend explorers to see the Pothole Rocks in detail.  Void of water, the intriguing bedrock of Conewago Falls below the dam greeted the curious with its ripples, cavities, and oddity.  It was an opportunity nature alone would not provide.  It was all because of the wall.

York Haven Dam and powerhouse. The “Wall” traverses Conewago Falls upstream to Three Mile Island to direct water to the powerhouse on the west shore of the Susquehanna River.

SOURCES

Smith, Stephen H.  2015.  #6 York Haven Paper Company; on the Site of One of the Earliest Canals in America.  York Past website www.yorkblog.com/yorkpast/2015/02/17/6-york-haven-paper-company-on-the-site-of-one-of-the-earliest-canals-in-america/  as accessed July 17, 2017.

Stranahan, Susan Q.  1993.  Susquehanna, River of Dreams.  The Johns Hopkins University Press.  Baltimore, Maryland.

Van Diver, Bradford B.  1990.  Roadside Geology of Pennsylvania.  Mountain Press Publishing Company.  Missoula, Montana.