2020: A Good Year

You say you really don’t want to take a look back at 2020?  Okay, we understand.  But here’s something you may find interesting, and it has to do with the Susquehanna River in 2020.

As you may know, the National Weather Service has calculated the mean temperature for the year 2020 as monitored just upriver from Conewago Falls at Harrisburg International Airport.  The 56.7° Fahrenheit value was the highest in nearly 130 years of monitoring at the various stations used to register official climate statistics for the capital city.  The previous high, 56.6°, was set in 1998.

Though not a prerequisite for its occurrence, record-breaking heat was accompanied by a drought in 2020.  Most of the Susquehanna River drainage basin experienced drought conditions during the second half of the year, particularly areas of the watershed upstream of Conewago Falls.  A lack of significant rainfall resulted in low river flows throughout late summer and much of the autumn.  Lacking water from the northern reaches, we see mid-river rocks and experience minimal readings on flow gauges along the lower Susquehanna, even if our local precipitation happens to be about average.

Back in October, when the river was about as low as it was going to get, we took a walk across the Susquehanna at Columbia-Wrightsville atop the Route 462/Veteran’s Memorial Bridge to have a look at the benthos—the life on the river’s bottom.

As we begin our stroll across the river, we quickly notice Mallards and a Double-crested Cormorant (far left) feeding among aquatic plants.  You can see the leaves of the vegetation just breaking the water’s surface, particularly behind the feeding waterfowl.  Let’s have a closer look.
An underwater meadow of American Eelgrass (Vallisneria americana) as seen from atop the Veteran’s Memorial Bridge at Columbia-Wrightsville.  Also known as Freshwater Eelgrass, Tapegrass, and Wild Celery, it is without a doubt the Susquehanna’s most important submerged aquatic plant.  It grows in alluvial substrate (gravel, sand, mud, etc.) in river segments with moderate to slow current.  Water three to six feet deep in bright sunshine is ideal for its growth, so an absence of flooding and the sun-blocking turbidity of muddy silt-laden water is favorable.
Plants in the genus Vallisneria have ribbon-like leaves up to three feet in length that grow from nodes rooted along the creeping stems called runners.  A single plant can, over a period of years, spread by runners to create a sizable clump or intertwine with other individual plants to establish dense meadows and an essential wildlife habitat.
An uprooted segment of eelgrass floats over a thick bed of what may be parts of the same plant.  Eelgrass meadows on the lower Susquehanna River were decimated by several events: deposition of anthracite coal sediments (culm) in the late-nineteenth and early-twentieth centuries, dredging of the same anthracite coal sediments during the mid-twentieth century, and the ongoing deposition of sediments from erosion occurring in farm fields, logged forests, abandoned mill ponds, and along denuded streambanks.  Not only has each of these events impacted the plants physically by either burying them or ripping them out by the roots, each has also contributed to the increase in water turbidity (cloudiness) that blocks sunlight and impairs their growth and recovery.
A submerged log surrounded by beds of eelgrass forms a haven for fishes in sections of the river lacking the structure found in rock-rich places like Conewago Falls.  A period absent of high water and sediment runoff extended through the growing season in 2020 to allow lush clumps of eelgrass like these to thrive and further improve water quality by taking up nutrients, particularly nitrogen and phosphorus.  Nutrients used by vascular plants including eelgrass become unavailable for feeding detrimental algal blooms in downstream waters including Chesapeake Bay.
Small fishes and invertebrates attract predatory fishes to eelgrass beds.  We watched this Smallmouth Bass leave an ambush site among eelgrass’s lush growth to shadow a Common Carp as it rummaged through the substrate for small bits of food.  The bass would snatch up crayfish that darted away from the cover of stones disturbed by the foraging carp.
Sunfishes are among the species taking advantage of eelgrass beds for spawning.  They’ll build a nest scrape in the margins between clumps of plants allowing their young quick access to dense cover upon hatching.  The abundance of invertebrate life among the leaves of eelgrass nourishes feeding fishes, and in turn provides food for predators including Bald Eagles, this one carrying a freshly-caught Bluegill.

These improvements in water quality and wildlife habitat can have a ripple effect.  In 2020, the reduction in nutrient loads entering Chesapeake Bay from the low-flowing Susquehanna may have combined with better-than-average flows from some of the bay’s lesser-polluted smaller tributaries to yield a reduction in the size of the bay’s oxygen-deprived “dead zones”.  These dead zones typically occur in late summer when water temperatures are at their warmest, dissolved oxygen levels are at their lowest, and nutrient-fed algal blooms have peaked and died.  Algal blooms can self-enhance their severity by clouding water, which blocks sunlight from reaching submerged aquatic plants and stunts their growth—making quantities of unconsumed nutrients available to make more algae.  When a huge biomass of algae dies in a susceptible part of the bay, its decay can consume enough of the remaining dissolved oxygen to kill aquatic organisms and create a “dead zone”.  The Chesapeake Bay Program reports that the average size of this year’s dead zone was 1.0 cubic miles, just below the 35-year average of 1.2 cubic miles.

Back on a stormy day in mid-November, 2020, we took a look at the tidal freshwater section of Chesapeake Bay, the area known as Susquehanna Flats, located just to the southwest of the river’s mouth at Havre de Grace, Maryland.  We wanted to see how the restored American Eelgrass beds there might have fared during a growing season with below average loads of nutrients and life-choking sediments spilling out of the nearby Susquehanna River.  Here’s what we saw.

We followed the signs from Havre de Grace to Swan Harbor Farm Park.
Harford County Parks and Recreation’s Swan Harbor Farm Park consists of a recently-acquired farming estate overlooking the tidal freshwater of Susquehanna Flats.
Along the bay shore, a gazebo and a fishing pier have been added.  Both provide excellent observation points.
The shoreline looked the way it should look on upper Chesapeake Bay, a vegetated buffer and piles of trees and other organic matter at the high-water line.  There was less man-made garbage than we might find following a summer that experienced an outflow from river flooding, but there was still more than we should be seeing.
Judging by the piles of fresh American Eelgrass on the beach, it looks like it’s been a good year.  Though considered a freshwater plant, eelgrass will tolerate some brackish water, which typically invades upper Chesapeake Bay each autumn due to a seasonal reduction in freshwater inflow from the Susquehanna and other tributaries.  Saltwater can creep still further north when the freshwater input falls below seasonal norms during years of severe drought.  The Susquehanna Flats portion of the upper bay very rarely experiences an invasion by brackish water; there was none in 2020.
As we scanned the area with binoculars and a spotting scope, a raft of over one thousand ducks and American Coots (foreground) could be seen bobbing among floating eelgrass leaves and clumps of the plants that had broken away from their mooring in the mud.  Waterfowl feed on eelgrass leaves and on the isopods and other invertebrates that make this plant community their home.
While coots and grebes seemed to favor the shallower water near shore, a wide variety of both diving and dabbling ducks were widespread in the eelgrass beds more distant.  Discernable were Ring-necked Ducks, scaup, scoters, Long-tailed Ducks, Redheads, American Wigeons, Gadwall, Ruddy Ducks, American Black Ducks, and Buffleheads.

We noticed a few Canvasbacks (Aythya valisineria) on the Susquehanna Flats during our visit.  Canvasbacks are renowned as benthic feeders, preferring the tubers and other parts of submerged aquatic plants (a.k.a. submersed aquatic vegetation or S.A.V.) including eelgrass, but also feeding on invertebrates including bivalves.  The association between Canvasbacks and eelgrass is reflected in the former’s scientific species name valisineria, a derivitive of the genus name of the latter, Vallisneria.

Canvasbacks on Chesapeake Bay.  (United States Fish and Wildlife Service image by Ryan Hagerty)

The plight of the Canvasback and of American Eelgrass on the Susquehanna River was described by Herbert H. Beck in his account of the birds found in Lancaster County, Pennsylvania, published in 1924:

“Like all ducks, however, it stops to feed within the county less frequently than formerly, principally because the vast beds of wild celery which existed earlier on broads of the Susquehanna, as at Marietta and Washington Borough, have now been almost entirely wiped out by sedimentation of culm (anthracite coal waste).  Prior to 1875 the four or five square miles of quiet water off Marietta were often as abundantly spread with wild fowl as the Susquehanna Flats are now.”

Beck quotes old Marietta resident and gunner Henry Zink:

“Sometimes there were as many as 500,000 ducks of various kinds on the Marietta broad at one time.”

The abundance of Canvasbacks and other ducks on the Susquehanna Flats would eventually plummet too.  In the 1950s, there were an estimated 250, 000 Canvasbacks wintering on Chesapeake Bay, primarily in the area of the American Eelgrass, a.k.a. Wild Celery, beds on the Susquehanna Flats.  When those eelgrass beds started disappearing during the second half of the twentieth century, the numbers of Canvasbacks wintering on the bay took a nosedive.  As a population, the birds moved elsewhere to feed on different sources of food, often in saltier estuarine waters.

Canvasbacks were able to eat other foods and change their winter range to adapt to the loss of habitat on the Susquehanna River and Chesapeake Bay.  But not all species are the omnivores that Canvasbacks happen to be, so they can’t just change their diet and/or fly away to a better place.  And every time a habitat like the American Eelgrass plant community is eliminated from a region, it fragments the range for each species that relied upon it for all or part of its life cycle.  Wildlife species get compacted into smaller and smaller suitable spaces and eventually their abundance and diversity are impacted.  We sometimes marvel at large concentrations of birds and other wildlife without seeing the whole picture—that man has compressed them into ever-shrinking pieces of habitat that are but a fraction of the widespread environs they once utilized for survival.  Then we sometimes harass and persecute them on the little pieces of refuge that remain.  It’s not very nice, is it?

By the end of 2020, things on the Susquehanna were getting back to normal.  Near normal rainfall over much of the watershed during the final three months of the year was supplemented by a mid-December snowstorm, then heavy downpours on Christmas Eve melted it all away.  Several days later, the Susquehanna River was bank full and dishing out some minor flooding for the first time since early May.  Isn’t it great to get back to normal?

The rain-and-snow-melt-swollen Susquehanna from Chickies Rock looking upriver toward Marietta during the high-water crest on December 27th.
Cresting at Columbia as seen from the Route 462/Veteran’s Memorial Bridge.  A Great Black-backed Gull monitors the waters for edibles.
All back to normal on the Susquehanna to end 2020.
Yep, back to normal on the Susquehanna.  Maybe 2021 will turn out to be another good year, or maybe it’ll  just be a Michelin or Firestone.

SOURCES

Beck, Herbert H.  1924.  A Chapter on the Ornithology of Lancaster County, Pennsylvania.  The Lewis Historical Publishing Company.  New York, NY.

White, Christopher P.  1989.  Chesapeake Bay, Nature of the Estuary: A Field Guide.  Tidewater Publishers.  Centreville, MD.

Migrating North?

CLICK ON THE LOGO FOR TODAY’S MIGRATION COUNT TOTALS

A steady stream of birds was on the move this morning over Conewago Falls.  There were hundreds of Ring-billed Gulls, scores of Herring Gulls, and a few Great Black-backed Gulls to dominate the flight.  Then too there were thirteen Mallards, Turkey Vultures and a Black Vulture, twenty or more American Robins, a half a dozen Bald Eagles (juvenile and immature birds), a couple of Red-winged Blackbirds, and, perhaps most unusual of all, a flock of a dozen Scoters (Melanitta species), a waterfowl typical of the Mid-Atlantic surf in winter.  All of these birds were diligently following the river, and into a headwind no less.

“Hold on just a minute there, buster,” you may say, “I’ve looked at the migration count by dutifully clicking on the logo above and there is nothing but zeroes on the count sheet for today.  The season totals have not changed since the previous count day!”

Ah-ha, my dedicated friend, correct you are.  It seems that today’s bird flight was solely in one direction.  And that direction was upriver, moving north into a north breeze, on a heading which conflicts with all logic for creatures that should still be headed south for winter.  As a result, none of the birds observed today were counted on the “Autumn Migration Count”.

You might say, “Don’t you know that Winter Solstice was three days ago, so autumn and autumn migration is over.”

Okay, point well taken.  I should therefore clarify that what we title as “Autumn Migration Count” is more accurately a census of birds, insects, and other creatures transiting from northerly latitudes to more favorable latitudes to the south for winter.  This transit can begin as early as late June and extend into the first weeks of winter.  While most of this movement is motivated by the reduced hours of daylight during the period, late season migrants are often responding to ice, bad weather, or lack of food to prompt a journey further south.  Migration south in late December and January occurs even while the amount of daylight is increasing slightly in the days following the Winter Solstice.

So what of the birds seen flying north today?  There was some snow cover that has melted away, and the ice that formed on the river a week ago is gone due to the milder than normal temperatures this week.

One may ask, “Were the birds seen today migrating north?”

Let’s look at the species seen moving upriver today a try to determine their motivation.

First, and perhaps most straight-forward, is the huge flight of gulls.  Wintering gulls on the Susquehanna River near Conewago Falls tend to spend their nights in flocks on the water or on treeless islands and rocky outcrops in the river.  Many hundreds, sometimes thousands, find such favorable sites along the fifteen mile stretch of river from Conewago Falls downstream to Lake Clarke and the Conejohela Flats at Washington Boro.  Each morning most of these gulls venture out to suburbia, farmland, landfill, hydroelectric dams, and other sections of river in search of food.  Gulls are very able fliers and easily cover dozens of miles outbound and inbound each day in search of food.  Many of the gulls seen this morning were probably on their way to the Harrisburg metropolitan area to eat trash.  Barring any extraordinary buildups of ice on this section of river, one would expect these gulls to remain and make these daily excursions to food sources through early spring.

Ring-billed Gulls fly upriver through the Pothole Rocks at Conewago Falls.
Herring Gulls stream upriver through Conewago Falls on their way to fine dining.

Second, throughout the season Bald Eagles have been tallied on the migration count with caution.  Flight altitude, behavior, plumage, and the reaction of the “local” eagles to these transients was carefully considered before counting an eagle as a migrant.  They roam a lot, particularly when young, and range widely to feed.  The movement of eagles up the river today was probably food related.  A gathering of adult, juvenile, and immature Bald Eagles could be seen more than a half mile upstream from the migration count lookout.  Those moving up the river seemed to assemble with the “locals” there throughout the morning.  White-tailed Deities occasionally drown, particularly when there is thin or unstable ice on the river (as there was last week) and they attempt to tread upon it.  Then, their bodies are often stranded among rocks, in trees, or on the crown of the dam.  After such a mishap, their carcasses become meals for carrion-eaters in the falls.  Such an unfortunate deity, or another source of food, may have been attracting the eagles in numbers today.

A distant gathering of Bald Eagles at the south end of Three Mile Island in upper Conewago Falls.

Next, Black and Turkey Vultures often roam widely in search of food.  The small numbers seen headed up-river today would tend to mean very little when trying to determine if there is a trend or population shift.  Again, food may have been luring them upriver from nearby roosts.

And finally, the scoters, Mallards, American Robins, and Red-winged Blackbirds may have been wandering as well.  Toward mid-day, the wind speed picked up and the direction changed to the east.  This raises the possibility that these and others of the birds seen today may sense a change in weather, and may seek to take flight from the inclement conditions.  Prompted by the ocean breeze and in an attempt to avoid a storm, was there some movement away from the Atlantic Coastal Plain to the upper Piedmont today?  Many species may make these types of reactive movements.  Is it possible that some birds flee or avoid ever-changing storm tracks and alter there wintering locations based on jet streams, water currents, and other climatic conditions?  Probably.  These are interesting dynamics and something worthy of study outside the simpler methods of a migration count.

A Ring-billed Gull begins feeding as storm clouds approach Conewago Falls at mid-day.  This and other gull species travel widely in their winter range to find food and safe roosting sites.  For them, northward spring migration usually begins no earlier than late February.