FIREFIGHTING HOSE AND NOZZLE COMPARISON CHART 21/2 Inch Ho

2¹/₂ Inch Hose with 2¹/₂ Inch Couplings

2 1/2 Inch Fire Hose with Smooth Bore Nozzle or Bresnan Cellar Nozzle

	Nozzle	Nozzle	Nozzle	Nozzle	Prsnl. to	Cooling	Adjusted	lowa	Friction	Engine	Engine	Engine	Engine
	Size in	Pressure	Flow in	Reaction	Advance	Capacity	Cooling	Formula	Loss per	Pressure	Pressure	Pressure	Pressure
Nozzle Type	inches	in P.S.I.	G.P.M.	lbsf	Nozzle	in MW	Capacity	Cov. cu. ft.	100' Hose	150' Line	200' Line	250' Line	300' Line
Smooth Bore	7⁄8	40	144	48	1	23.6	11.8	0	4	46	48	50	52
		45	153	54	1	25.1	12.6	0	5	53	55	58	60
		50	161	60	1	26.4	13.2	0	5	58	60	63	65
		55	169	66	2	27.7	13.9	0	6	64	67	70	73
		60	176	72	2	28.9	14.5	0	6	69	72	75	78
Smooth Bore	15/16	40	165	55	1	27	13.5	0	5	48	50	53	55
		45	175	62	2	28.7	14.4	0	6	54	57	60	63
		50	185	69	2	30.4	15.2	0	7	61	64	68	71
		55	194	76	3	31.8	15.9	0	8	67	71	75	79
		60	202	83	3	33.1	16.6	0	8	72	76	80	84
Smooth Bore	1	40	187	63	2	30.7	15.4	0	7	51	54	58	61
		45	199	71	2	32.6	16.3	0	8	57	61	65	69
		50	210	79	3	34.5	17.3	0	9	64	68	73	77
		55	220	86	3	36.1	18.1	0	10	70	75	80	85
		60	230	94	3	37.7	18.9	0	11	77	82	88	93
Smooth Bore	11/8	40	238	79	3	39	19.5	0	11	57	62	68	73
		45	252	89	3	41.3	20.7	0	13	65	71	78	84
		50	266	99	2-fixed	43.6	21.8	0	14	71	78	85	92
		55	279	109	2-fixed	45.8	22.9	0	16	79	87	95	103
		60	291	119	¥	47.7	23.9	0	17	86	94	103	111
Smooth Bore	1¼	40	294	98	2-fixed	48.2	24.1	0	17	66	74	83	91
		45	311	110	2-fixed	51	25.5	0	19	74	83	93	102
		50	328	123	÷	53.8	26.9	0	22	83	94	105	116
		55	344	135	÷	56.4	28.2	0	24	91	103	115	127
		60	359	147	¥	58.9	29.5	0	26	99	112	125	138
Bresnan Cellar	21/2	100	280	0	1	45.9	23+	?	16	124	132	140	148

Nozzle Reaction lbsf (force) calculations: NR for Solid Stream Nozzles = $1.57 \times d^2 \times NP$ NR for Fog Stream Nozzles = $0.0505 \times Q \times \sqrt{NP}$ (Q = Flow in Gallons Per Minute) Personnel to Advance Nozzle: To 60± lbsf = 1 firefighter; To 75± lbsf = 2 firefighters; To 95± lbsf = 3 firefighters; To 110± lbsf = 2 firefighters in a fixed position only; >110 lbsf = Good Luck Cooling Capacity (Theoretical) in MW = Flow in kg/second X.2.6 MJ/kg For reference: A modern living room fire produces a Heat Release Rate of approximately 9 MW to 12 MW Adjusted Cooling Capacity in MW = Cooling Capacity in MW = Kfloiency Factor (0.5 for straight straams) Note: Efficiency may at times be as low as 20% (0.2) lowa Formula Coverage in cubic feet (for knock down of a closed compartment fire in 30 seconds using an Indirect Attack with water fog) = Nozzle Flow in G.P.M. X 100 Friction Loss in P.S.I. per 100' of Hose = C X (Q/100)² The coefficient "C" is an adjusted figure reflecting field conditions (the theoretical coefficient is used for results in parenthesis) Adjusted and Theoretical Friction Loss Coefficient used for hose and engine pressure calculations: 1½" Hose 12 (15.5) 2" Hose 6 (8) 2½ Hose 0.2 (2) 3" Hose 0.8 (1) + fog stream efficiency diminishes at nozzle pressures <100 P.S.I. as droplet size increases (>1mm) and droplet velocity decreases. \$Short pulse fog use is limited to flows \$150 G.P.M.